Progress on the CDX-U *m*=1 mode test problem

Joshua Breslau, M3D code group, Stuart Hudson

CEMM Group Meeting Corpus Christi, TX April 27, 2003

Outline

- Generate an evolving series of CDX equilibria with the Tokamak Simulation Code (TSC).
 - Aspect ratio $R_0/a = 0.34 / 0.24 = 1.4$
 - $-I_p = 55 \text{ kA}$
 - β in the range 2 4 %.
 - q profiles monotonic, increasing; q_0 decreases from 1.53 to 0.89 over series.
- Look for linear n=1 mode for select cases with M3D.
- Amplify 1,1 modes and evolve nonlinearly with M3D to observe sawtooth crash.
- Characterize dependence of orderliness of evolution on initial *q* profile.

<u>Case 1: $q_0 = 0.955$ </u>

16 planes, 91 radial grids

η=10-4; μ=10-3

Dominant n=1 mode is m=1

Isosurface and contour plots at $\phi=0$ and z=0 planes of incompressible velocity stream function *U* for the n=1 mode.

Accelerate nonlinear evolution by "chopping" mode up

(Multiply all non-equilibrium quantities by a constant.)

- Maximum energy in n>0 modes.
- Maximum sideband width.
- Good surfaces still predominate.

 $t = t_{chop} + 125.78$

- Original magnetic axis vanishes.
- Surface shapes still distorted.
- Good surfaces still predominate.

- Equilibrium is restored.
- Applied loop voltage should eventually produce a second sawtooth crash.

15

10

۵

⊒

Normalized minor radius

Dominant n=1 mode is again m=1

Projected growth time for $\eta = 10^{-4}$, $\mu = 10^{-3}$: 330 τ_A

Isosurface and contour plots at $\phi=0$ and z=0 planes of incompressible velocity stream function *U* for the n=1 mode.

<u>Accelerate nonlinear evolution by</u> <u>"chopping" mode up</u>

(Multiply all non-equilibrium quantities by a constant.)

- Reconnection is proceeding.
- Islands are large and growing.
- Stochasticity appears only in limited regions.

• Original magnetic axis vanishes.

• Large stochastic regions separate the few remaining good surfaces.

- Islands overlap.
- •Stochastic regions predominate.
- Plasma has effectively disrupted.

Conclusions

- The tendency of the plasma to disrupt is sensitive to the precise value of q_0 .
- For the particular conditions of this study the threshold value has been bracketed between 0.89 and 0.927.
- Below the threshold q_0 , sideband islands grow until they overlap, resulting in stochasticity and disruption.
- Above the threshold q_0 , the driven islands heal following the disappearance of the 1,1 island and orderly Kadomtsev sawtooth reconnection is observed.

Future Work

- Investigate sensitivity of disruption threshold to plasma shaping (elongation), aspect ratio.
- Repeat study with two-fluid and/or kinetic effects added.
- Follow evolution for an entire sawtooth cycle (crash to crash) to check accuracy of period estimate.