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The dynamics of fusion plasmas lead to instabilities that can spontaneously erupt and degrade confinement and sometimes lead to
catastrophic disruptions of the entire plasma itself. These instabilities occur in a broad range of spatial and temporal scales, spanning
many orders of magnitude, often resulting from nonlinear interactions. Computational simulations are crucial to understanding these
phenomena.

NIMROD(NonIdeal MHD with Rotation - Open Discussion)1 is a massively parallel three dimensional magnetohydrodynamic simulation
utilizing finite elements (FE) to represent the poloidal plane and a fourier decomposition in the toroidal direction. The use of finite
elements allows flexibility in the representation of the simulation domain. The ability to model experimental shots with NIMROD
provides a platform to test new ideas of plasma behavior. To expand the physics capabilities of NIMROD, kinetic effects have been added
to NIMROD by the addition of δf PIC(Particle in Cell) module. The addition of kinetic particle effects captures essential wave-particle
interactions important in the saturation of various MHD instabilities such as the internal kink mode, sawtooth and fishbone instabilities,
and toroidal Alfven eigenmodes. Particle simulation capabilities in NIMROD can also be extended to simulate various phenomena such as
neutral beam injection, ion cyclotron resonance heating, and anomalous loss mechanisms. In addition, this hybrid kinetic-MHD technique
lays the foundations for a kinetic closure to the MHD equations.

This poster will briefly introduce NIMROD and δf PIC in general, then detail the development of PIC in finite elements and their
implementation and present preliminary results.

1C. R. Sovinec et al,”Nonlinear Magnetohydrodynamic Simulation using High-Order Finite Elements”, to appear in Journal of Computatioal Physics



Kinetic

• described by phase space continuity equa-

tion

→Vlasov Equation

• fast time scales - {Ω−1
i ,τt}

• small spatial scales - {ρi,∼ 100ρi}

• plasma described by abstract 6-D phase

space

• equations are fundamental

Fluid-MHD

• described by velocity moment of Vlasov Equa-

tion

→MHD Equations

• long time scales - {τA, τr}

• global spatial scales

• plasma described by physical quantities -

{n,V, p}

• many assumptions made



Hybrid Kinetic-MHD Bridges the Two

• captures kinetic effects lost in MHD equations

• kinetic effects strongly effect MHD instabilities

– fishbone

– sawtooth

– TAE

• can simulate real fusion plasma experiments

– α particles effects

– neutral beam injection

– ICRF heated ions

• ultimate of ultimates : kinetic closures



Kinetic MHD Equations2

Starting from Vlasovs equation:

∂f

∂t
+ v ·

∂f

∂x
+

F

m
·
∂f

∂v
= 0

and take the first velocity moment (
∫

mv [·] dv) with f = fb + fh and E‖ = 0.

mn
dU

dt
+m

∂nhVh

∂t
= −∇pb −∇ · Ph + J ×B

where Ph =
∫

vvfhdv

assume v‖h � v⊥h

mn
dU

dt
+m

∂nhV‖h

∂t
= −∇pb −∇ · Ph + J × B

momentum equation for hot particles is

m
∂nhVh

∂t
= −∇ · Ph + Jh ×B

subtract parallel component

mn
dU

dt
= −∇pb − (∇ · Ph)⊥ + J × B

2W. Park, et al, ”Three-dimensional hybrid gyrokinetic- magnetohydrodynamic simulation”,Physics of Fluids B,4, 1992



Kinetic Equation and δf-method3

Vlasov Equation
∂f(z)

∂t
+ ż ·

∂f(z)

∂z
= 0

where f(z) is the 6 dimensional phase space distribution and z is the phase coordinate.

Typically (in the fusion community), kinetic equations are implemented as particle-in-cell(PIC)

simulations using the δf -method.

• split phase space distribution into steady state and evolving perturbation:

f = f0(z) + δf(z, t)

• put into Vlasov Equation:
∂δf

∂t
+ ż ·

∂δf

∂z
= −z1 ·

∂f0

∂z

using z = z0 + z1 and ż0 ·
∂f0
∂z = 0

• along the characteristics ż

˙δf = −z1 ·
∂f0

∂z

3G. Hu and J. A. Krommes, ”Generalized weighting scheme for δf particle simulation method”, Physics of Plasmas,1, 1994



Characteristic Equations of Motion

Use the drift kinetic equations of motion.

ẋ = v‖b̂ +
m

eB4

(

u2 +
v2
⊥

2

)(

B×∇
B2

2

)

+
E ×B

B2

mv̇‖ = −b̂ · (µ∇B − eE)



‘Like NIMROD, the mighty hunter before the Lord’

NIMROD(NonIdeal MHD with Rotation - Open Discussion)

• massively parallel 3-D MHD simulation

• domain decomposition in poloidal plane and fourier modes

• utilizes Lagrange type finite element

• can handle extreme anisotropies,
χ‖
χ⊥

� 1

• flexibility to model general geometry → real experiments

• model experiment relevant parameters, S > 107

• semi-implicit advance, not restricted by magnetosonic CFL condition



NIMROD equations

NIMROD evolves the extended MHD equations

∂B

∂t
= −∇× E

∇×B = µ0J

E = −U ×B+ηJ +
1

ne
J × B

+
me

ne2

[

∂J

∂t
+ ∇ · (JU + UJ)

+
∑

α

qα
mα

(∇pα + ∇ · Πα)

]

∂n

∂t
+ ∇ · (nU) = ∇ ·D∇n

mn(
∂U

∂t
+ U · ∇U) = J × B−∇p−∇ · Π

nα
γ − 1

(
∂Tα
∂t

+ Uα · ∇Tα) = −∇ · qα +Qα

−pα∇ ·Uα − Πα : ∇Uα



where the heat flux is

q = −n
[

χ‖b̂b̂ + χ⊥(1 − b̂b̂)
]

· ∇T

recall
χ‖
χ⊥

� 1

Q is a source term

Q = ηJ2 + νmn∇UT : ∇U

from Ohmic and viscous heating.

plasma obeys the ideal gas law, p = nT .



Spatial representation in NIMROD

The perturbed NIMROD fields are in FE-Fourier representation

δA(x, t) =
∑

j

Aj,0(t)αj,0 +
∑

j

∑

n

(Aj,n(t)αj,n + c.c.)

where

αj,n = Nj(p, q) exp(inφ)

(p, q) are logical coordinates

The Lagrange type elements are composed of polynomials of the form:

lmj (η) =

∏m
b=1b6=a

(η − ηb)
∏m

b=1b6=a
(ηa − ηb)

such that

Nk(p, q) = li(p)lj(q)



(1,1) internal kink eigenmode from NIMROD



Formulation of PIC in FEM

Particles in a finite element grid have the added complication of an irregular grid.

• nontrivial shape functions associated with the gather and scatter process

• a more complicated search algorithm

• added complications of parallelization

Shape function used for gather and scatter:

Ap =
∑

i

Ni(p, q)Ai, Mj =
∑

e

∑

p

Nj(p, q)mpJp

Need to determine logical coordinates (p, q) of each particle to evaluate shape functions



Solving for the p’s&q’s

Express particle coordinates in finite element fashion:

Rp =
m2
∑

i=1

RiNi(p, q), Zp =
m2
∑

i=1

ZiNi(p, q),

(p, q) must be solved for in an iterative fashion due to the nonlinear nature of the relevent

equations.

Invert this relation using Newton-Raphson method.

xk+1 = xk −
f(xk)

f ′(xk)

where the x = (p, q)

More explicitly
{

pk+1

qk+1

}

=

{

pk

qk

}

+ f ′−1

{

Rp −Rk
p

Zp − Zk
p

}

f ′−1 =

( ∂p
∂R

∂p
∂Z

∂q
∂R

∂q
∂Z

)



Invoke the Inverse Function Theorem

f ′−1
k =

(

∂R
∂p

∂R
∂q

∂Z
∂p

∂Z
∂q

)−1

=
1

∆k

(

∂Z
∂q −∂R

∂q

−∂Z
∂p

∂R
∂p

)

k

where ∆k is the determinant

Inserting the definitions for the shapefunctions
(

∂R
∂p

∂R
∂q

∂Z
∂p

∂Z
∂q

)

=

(

∑m2

i=1Ril
′(p)l(q)

∑m2

i=1Ril(p)l
′(q)

∑m2

i=1Zil
′(p)l(q)

∑m2

i=1Zil(p)l
′(q)

)

Iterate until
√

(R−Rk
p)

2 + (Z − Zk
p )

2 < ε

If −1 ≤ p, q ≤ 1 is not true, then the particle is not in this element, and another element needs

to be searched. The new element to be searched is determined by the value of (p, q), left if

p < −1, right if p > 1, down if q < −1, up if q > 1, and combinations thereof.



Particle Sorting

• Sorting is important because:

– sorting makes domain decomposition of particles trivial

– cache thrashing is minimized

• Each processor does a ‘bucket’ sort of it’s own assigned particles

• Particles are sorted wrt the finite element grid

• Particles with a logical coordinate outside of the processor sub-domain are passed to their

appropriate processor

• A locally sorted list of particles is finally tabulated on each processor



Parallel performance

Figure 1: scaling of total time and sorting time wrt #processors and particle number

• Algorithm is scalable, total cpu time ∝ 1
#procs

• search algorithm shows strong dependence on the number of processors degrading scalability



Load Balancing Issues

Nonuniform grid causes dramatic load balancing problem.

Current solution is to restrict domain decomposition to poloidal direction.



CGL Pressure Tensor

The Kinetic MHD momentum equation is

mn

(

∂U

∂t
+ U · ∇U

)

= J ×B −∇p− (∇ · Phot)⊥

where

Phot =

∫

mvvδf dv

for CGL pressure tensor we have

P =





p⊥ 0 0

0 p⊥ 0

0 0 p‖





where p⊥ =
∫

µBδf dv and p‖ =
∫

mv2
‖δf dv so

(∇ ·Phot)⊥ = ∇⊥p⊥



Slowing Down Distribution

Assume an energetic minority ion species resulting from beams or α particles with uniform

initial energy. Through collisions with electrons, the monoenergetic distribution becomes the

slowing down distribution

f0 =
P0 exp(

Pζ

ψ0
)

ε3/2 + ε
3/2
0

where Pζ = g(ψp)ρ‖ − ψp

˙δf = f0

{

mg

eψ0B3

[(

v2
‖ +

v2
⊥

2

)

δB · ∇B

]

+
v1 · ∇ψp
ψ0

+
3

2

eε1/2

ε3/2 + ε
3/2
0

vD ·E

}

vD =
m

eB3

(

v2
‖ +

v2
⊥

2

)

(B ×∇B)

v1 =
E ×B

B2
+ v‖ ·

δB

B



Particle Equilibration

Within a few transit times, the simulation particle distribution settles



Phot shows Eigenfunction Formation



Growth rate and time history of Vr



CEMM Energetic Particle Benchmark



Summary

• develop PIC algorithm suitable for FEM

• parallelization scales well for small number of processors

• sorting is nonscaling and strongly dependent on the number of processors

• load balancing an issue

• particle noise must be reduced

• particle orbits accurately calculated

• Phot picks up NIMROD eigenmode

• inclusion of kinetic effects drives instability

• linear results agree with competing simulation (M3D) for βh = 0 and βh = 8%


