Previous M3D Study of Current hole with negligible β

Result: *n*=0 reconnection (axisymmetric sawtooth). Breslau et al. (to appear Phys.Plasmas 2003)

Poloidal flux contours:

0.2

0.4

0.6

Minor radius

0.8

1.0

Drive term is finite on axis, peaked off-axis, zero at boundary.

Current Goes Negative Off-Axis First

• *q*=∞ surface appears soon afterward, when **net current** enclosed by surface is zero.

Current Density History at Midplane

 $h = 10^{-4}$ J_{f} time major radius

• Repeated n=0 reconnection events keep current clamped near zero in core region.

Reconnection with CircularCross-Section is Pure m=1

Finite β effects

MHD

With a peak β of 1 %, the n=0 sawtooth mode can saturate due to pressure peaking in the island.

The physical reason is analogous to similar n=1 mode saturation cases. A complete reconnection would mean the high pressure island region moving inbord, which is energetically unfavorable.

Pressure

Flux

When the pressure is reduced, the state went through complete reconnections, showing that the saturation is in fact due to finite β effect.


```
Flux
```

Ion-drift kinetic particles/MHD

Similar behavior as MHD, i.e., saturation due to pressure peaking in the island.

Two-Fluids

The mode rotates in ω^{*_i} direction and eventually goes through complete reconnection with Pe~Pi. (With Pe=0.9 Ptot, it rotate in ω^{*_e} direction.)

MHD with an initial rotation of the mode is sufficient to induce a fast reconnection.

This indicates that the initial rotation due to ω_{*i} is all that is needed for complete reconnection for the two-fluid case.

Pressure peak in the ilsand remains intact. The negative current still disappears through a fast reconnection

Longer time behavior Ion-drift kinetic particles/MHD

In a resistive time scale, topology changes and then, fast reconnection occurs.

Longer time behavior Two-fluids

Successive crashes.

The following shows the next crash.

Flux

- n=0 reconnection still flattens current profile.
- Higher *n* modes develop as well.

Summary

• Breslau et al. found that n=0 sawteeth prevents current going substantially negative inside a current hole, for negligible β cases.

• Beta effects on current hole evolution

With peak β of 1%, both MHD, and drift-kinetic-ion-particle/MHD gave mode saturation due to pressure peaking in the m=1 island.

However, two-fluid model gives complete reconnection with mode rotation to ω^* i direction.

MHD with some initial mode rotaion resulted in a similar complete reconnection as the two-fluid case, indicating the mode rotation is the essential cause of the complete reconnection in the two-fluid case.

For a longer time scale, the two-fluid model gives successive crashes.