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Outline
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• Pellet Injection - Progress
• Conclusion and future work
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3D AMR MHD Code - Status

• Hyperbolic fluxes computed using an unsplit upwind 
method

• Implicit treatment of parabolic terms 
• r ¢ B=0 by projection
• Inclusion of nonlinear coefficients in the elliptic 

solvers is under progress 
– Reconnection (with Breslau’s nonlinear η) will be 

the test case
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Single-fluid resistive MHD Equations

• Equations in conservation form
Parabolic

Hyperbolic

Reynolds no.

Lundquist no.

Peclet no.
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Numerical Method

• MHD Equations written in symmetrizable near-conservative form 
(Godunov, Numerical Methods for Mechanics of Continuum Media, 1,  1972, Powell et al., 
J. Comput. Phys., vol 154, 1999).

– Deviation from total conservative form is of the order of ∇⋅B truncation errors

• The symmetrizable MHD equations lead to the 8-wave method. 
– The fluid velocity advects both the entropy and div(B)

• Finite volume approach. Hyperbolic fluxes determined using the unsplit
upwinding method (Colella, J. Comput. Phys., Vol 87, 1990)

– Predictor-corrector.
– Fluxes obtained by solving Riemann problem
– Good phase error properties due to corner 

coupling terms
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r¢ B=0 by Projection
• Compute the estimates to the fluxes Fn+1/2

i+1/2,j using the unsplit formulation
• Use face-centered values of B to compute r¢ B. 

Solve the Poisson equation r2φ = r ¢ B
• Correct B at faces: B=B-rφ
• Correct the fluxes  Fn+1/2

i+1/2,j with projected values of B
• Update conservative variables using the fluxes 

– The non-conservative source term S(U) α r¢ B has been algebraically removed

• On uniform Cartesian grids, projection provides the smallest correction to 
remove the divergence of B. (Toth, JCP 2000)

• Does the nature of the equations change? 
– Hyperbolicity implies finite signal speed
– Do corrections to B via r2φ=r¢ B violate hyperbolicity?

• Conservation implies that single isolated monopoles cannot occur. Numerical 
evidence suggests these occur in pairs which are spatially close.

– Corrections to B behave as α 1/r2 in 2D and 1/r3 in 3D

• Projection does not alter the order of accuracy of the upwinding scheme and is 
consistent
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Unsplit + Projection AMR Implementation

• Implemented the Unsplit method using Chombo
• Solenoidal B is achieved via projection, solving the elliptic 

equation r2φ=r¢ B
– Solved using Multgrid on each level (union of rectangular meshes)
– Coarser level provides Dirichlet boundary condition for φ

• Requires O(h3) interpolation of coarser mesh φ on boundary of fine level
– a “bottom smoother” (conjugate gradient solver) is invoked when 

mesh cannot be coarsened

• Multigrid convergence is sensitive to block size
• Flux corrections at coarse-fine boundaries to maintain 

conservation
– A consequence of this step: r¢ B=0 is violated on coarse 

meshes in cells adjacent to fine meshes. 
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Implicit treatment of parabolic flux terms
• Implicit treatment requires the solution of elliptic equations 

(Helmholtz equation)
– Completed implicit treatment of viscous, heat conduction and 

resistive terms
– Viscous and conduction terms require non-constant coefficient 

Helmholtz solvers - Completed
– Favored approach: Implicit Runge Kutta, TGA Approach (Twizell, 

Gumel, Arigu, Advances in Comp. Math. 6(3):333-352, 1996)
• Due to C++ abstractions, other solvers (Backward Euler, Crank-Nicholson) can also be used 

instead of TGA – choice can be made by the user.

– r¢ u is ignored in the shear stress tensor. If r¢ u  is included, the resulting elliptic 
equations are coupled -such solvers are under development

• Quadratic interpolation (O(h3)) at coarse-fine boundaries
– Corner terms required and obtained by linear interpolation

• Flux-refluxing step requires implicit solution on all levels 
synchronized at the current time step.
– Backward Euler used for this step
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Weak rotor – Resistive MHD 

ρ with velocity streamlines

Conservation

Pressure with B field lines
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Pellet Injection: Objective and Motivation

• Objectives
– Identify the mechanisms for mass distribution during pellet 

injection in tokamaks
– Quantify the differences between “inside launch” and “outside 

launch”

• Motivation
– Fusion power depends upon efficient fueling
– Gas puffing is limited in its ability to achieve core fueling
– Injection of frozen hydrogen pellets is a viable method of 

fueling a tokamak (Bell et al., Nuclear fusion, 2000)

• Pellet injection provides much deeper fueling

– Pellet-plasma interactions:
• Ablation: Considered well-understood
• Mass deposition: Large scale MHD driven but poorly understood
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Background - Experimental

• Early pellet experiments showed improvement in 
energy confinement with pellet fueled plasmas 
(Greenwald, PRL, 1984)

• Pellet injection of frozen hydrogen is a viable method 
to fuel tokamaks (Bell et al., Nuclear Fusion 1992 – this TFTR 
experiment also exceeded empirical Greenwald density limit) 

• Inside (HFS) vs. outside (LFS) launch
– HFS is more effective in fueling the center of the plasma (Lang 

et al. PRL 1997, Baylor et al. Phys. Plasmas 2000)
– Example: DIIID fueling efficiency is 95% (HFS), 55% (LFS)

• Pellets trigger formation of internal transport barrier 
with central heating

• Edge localized modes are triggered in H-mode by 
strong perturbations from pellets
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Background – Simulation/Theory
• Earliest ablation model by Parks (Phys. Fluids 1978)

– Accurate expression for pellet ablation once pellet is in contact with the high 
temperature plasma

• Detailed multi-phase calculations in 2D of pellet ablation 
(MacAulay, PhD thesis, Princeton Univ 1993, Nuclear Fusion 1994)
– Agreement with Parks model of plasma ablation within a factor of 2

• 3D Simulations by Park and Strauss (Phys. Plasmas, 1998)

– Solve an initial value problem . Initial condition consists of a
prescribed MHD equilibrium and a large density “blob” to mimic a
fully ablated pellet cloud with zero flux averaged pressure 
perturbation

• Pellet cloud to device dimension was relatively large due to resolution 
restrictions

– No motion of pellet modeled
– Mass distribution along field lines 
– Scaling law for mass distribution established
– Verified that MHD effects cause localized density perturbation to 

displace towards LFS.
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Approach/ Model
• Detailed 3D AMR simulations of pellet injection – pellet treated as 

moving density source
– Ratio of pellet size to device size is ~O(10-3)

• Phased approach
– Simple Cartesian geometry AMR simulation to understand the basic

physics of mass redistribution with varying degrees of complexity
• Ideal MHD with density and energy source terms
• Resistive MHD with density source and anisotropic heat conduction

– Force terms to mimic toroidal geometry
• Physical assumptions for first phase of AMR 

simulations
– Pellet ablates with an analytic ablation model
– Instantaneous heating of ablated mass by electrons to 

corresponding flux surface temperature
– No drag coupling between pellet and ambient plasma
– Single fluid/single phase

• Mathematical model is Ideal MHD with source terms in 
density and energy equations
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Mathematical Model I

• Mass conservation

• Momentum conservation

• Maxwell equations

• Energy conservation

Mass source active on pellet surface

Toroidal source terms
zero in Cartesian geometry
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Mathematical Model II

• Mass source is given using the ablation model by Kuteev
(Nuclear Fusion 1995) 

– Pellet shape is spherical for all t
– Above equation uses cgs units

• Delta function in source term approximated as a “top-hat” 
function of width ten times the pellet radius (motivated by Parks et al. 
Phys. Plasmas 2000)

• For numerical computations, equations re-written in strong 
conservation form

• Energy equation source term: dN/dt x 3T/2 where T is the 
temperature of the flux surface at the pellet center to model 
heating by electrons on the flux surface
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AMR Simulation Parameters
• Toroidal Magnetic Field 

BT=0.2 T
• Device size a=0.2m
• Initial Pellet size rp=0.1 cm
• Pellet velocity vp=3000 m/s
• Plasma β=0.1
• Average plasma Temperature T=662 eV
• Initial average density n=1.5 x 1019/m3

• Boundary conditions: Bn ¢ n=0, u¢ n =0 on sides
Periodic in z-direction

• Initial condition: Ideal MHD equilibrium
ψ= ψ0 sin kx x cos ky y

p=p0 + p1 ψ2

B=r ψ x r z + BT k
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Results from AMR Simulations –Early time

• Observations
– Even at early time, 

mass is rapidly 
distributed along field 
lines, and shows the 
appearance of 
striations (consistent 
with experimental 
observations)

t=0.66. ρ Mach No. (Peak 0.3)

Pressure BT
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Results from AMR Simulations –Early time

Density 
isosurfaces at 
t=0.45. Boxes 
indicate 
meshes at 
various AMR 
levels. 
Equivalent 
uniform mesh 
resolution: 5123

Level 0

Level 0-2

Level 0-1

Level 0-3
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Results from AMR Simulations

Parallel velocity isosurfaces at 
t=3.86

t=3.86 Isosurfaces of plasma β
βmax=0.51 at the pellet surface

(Max = 0.3)
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Results from AMR Simulations

Isosurfaces of ρ=1.1ρ0

(Max = 0.3)

Isosurfaces of pressure
t=1.1 t=3.2 t=6.4
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Results from AMR Simulations

t~25 ρ=1.1ρ0

Isosurfaces of P

ρ(x,y,zmid)

p(x,y,zmid)



24

Conclusion and Future Work
• First 3D AMR simulations of pellet injection in Cartesian geometry

– Includes model for pellet ablation and prescribed motion of pellet
– Ablated mass is distributed along field lines
– This preliminary study indicates that AMR is a viable approach to 

efficiently resolve the relatively small pellet 

• A conservative solenoidal B AMR MHD code was developed in 
3D using the Chombo framework
– Unsplit upwinding method for hyperbolic fluxes
– r¢ B=0 achieved via projection

• Future Work
– Toroidal forcing terms to mimic tokamak geometry
– Investigate LFS and HFS pellet-launches
– Better treatment of energy equation

• Inclusion of anisotropic heat conduction

– Realistic device parameters


