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Resistive Ballooning Modes: physical or 
numerical?

• Resistive ballooning modes tend to be present in finite beta 
resistive MHD numerical simulations – CDX-U

• Are they important in experiments?
– Edge turbulence

• What physics stabilizes them?
• Complicating issue: simulations are usually much more 

resistive than simulations
– CDXU an exeption, S is the same in exp.  and simulations

• Most theory done 20 years ago 



CDX-U simulations



RBM Electromagnetic (long wavelength) 
limit

2 2/m rγ η>>• Validity condition: m = nq < 10
• Dispersion relation in 

electromagnetic limit is like 
tearing mode (Chance, Drake, 
Glasser, Strauss…)

• Interchange coupling is 
important at moderately high S
– Tokamaks: stabilizing

• If not too close to ideal 
instability boundary

– Stellarators: destabilizing
• 2 fluid drifts

– Validity condition
– Stabilizing, growth rate 

negligible
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RBM Electrostatic (short wavelength) limit

• Validity: m >> 10
• Carreras – Diamond, …
• Can be stabilized by sound 

waves (Hender)
– Not valid for very large m

• 2 fluid
– Validity condition
– Drift stabilizes modes
– Growth rate proportional to 

resistivity, independent of m
– If temperature gradient length 

is sufficiently shorter than 
density gradient length, modes 
are completely stable 
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CDX-U electrostatic modes- can they be 
stabilized?

2 2
* /A mH R rω τ β=

/( )piH c Rω=• Hall parameter H = .15,
beta =.03,S = 104, q=3

• Drift condition can’t be 
satisfied, m < 1000, 
sensitive to H.

• Sound wave only
stabilizing with large
enhancement but not
for all m.

• CDX-U RBM turbulent
• Perpendicular thermal 

conduction can help 
stabilize RBMs.
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2 Fluid and enhanced sound effects
n=1, 4 

H has almost no effect
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Conclusions

• Resistive MHD
– Long wavelength

• stabilized by interchange coupling in tokamaks, for S > 
105

– Short wavelength
• Stabilized by sound, for moderate m.
• Large m is unstable

• 2 fluid drifts
– Validity condition is harder to satisfy in simulations than in 

experiments because S is smaller – except in CDX-U
– Stabilizes or greatly slows down RBMs

• CDX-U is RBM unstable, nonlinearly turbulent
– Can be stabilized with artificial H or sound speed or cross 

field thermal conduction.
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