A Study of Linear Ideal MHD Waves with the SEL Spectral Element Code

A. H. Glasser and V. S. Lukin

Ideas That Change the World

Presented at the CEMM Meeting Missoula, Montana, April 25, 2004

Ideal MHD Waves

$$\beta \equiv \frac{P}{2\mu_0 B^2}, \quad \gamma = \frac{5}{3}, \quad \cos \theta \equiv \frac{\mathbf{k} \cdot \mathbf{B}}{kB}$$
$$c_A^2 \equiv \frac{B^2}{\mu_0 \rho}, \quad c_S^2 \equiv \frac{\gamma P}{\rho}, \quad \frac{c_A^2}{c_s^2} = \frac{\gamma \beta}{2}, \quad v \equiv \frac{\omega}{k}$$
$$v_{\pm}^2 = \frac{1}{2} \left\{ \left(c_A^2 + c_S^2 \right) \pm \left[\left(c_A^2 + c_S^2 \right)^2 - 4c_A^2 c_S^2 \cos^2 \theta \right]^{1/2} \right\}, \quad v_A^2 = c_A^2 \cos^2 \theta$$

Friedrichs Diagram, $\beta = 10\%$

Consequences

For
$$\mathbf{k} \cdot \mathbf{B} \rightarrow 0$$
, $\omega_{-}, \omega_{A} \ll \omega_{+}$

These lowest-frequency modes are the most easily destabilized by small effects like pressure gradients, bootstrap currents, and resistivity. Accurate treatment of such subtle effects requires accurate representation of

$$k_{||} << a,R << k_{\perp}$$

Spatial Discretization

Flux-Source Form of Equations

$$\frac{\partial u^i}{\partial t} + \nabla \cdot \mathbf{F}^i = S^i$$

$$\mathbf{F}^i = \mathbf{F}^i(t, \mathbf{x}, u^j, \nabla u^j)$$

$$S^i = S^i(t, \mathbf{x}, u^j, \nabla u^j)$$

Galerkin Expansion

$$u^{i}(t, \mathbf{x}) \approx \sum_{j=0}^{n} u_{j}^{i}(t) \alpha_{j}(\mathbf{x})$$

Weak Form of Equations

$$(\alpha_i, \alpha_j)\dot{u}_j^k = \int_{\Omega} d\mathbf{x} \left(S^k \alpha_i + \mathbf{F}^k \cdot \nabla \alpha_i \right) - \int_{\partial \Omega} d\mathbf{x} \alpha_i \mathbf{F}^k \cdot \hat{\mathbf{n}}$$

Alternative Polynomial Bases

- Uniformly-spaced nodes
- Diagonally subdominant

- Lagrange interpolatory polynomials
- Nodes at roots of $(1-x^2) P_n^{(0,0)}(x)$
- Diagonally dominant

Spectral (Modal) Basis

- Jacobi polynomials (1+x)/2, (1-x)/2, (1-x²) P_n^(1,1)(x)
- Nearly orthogonal
- Manifest exponential convergence

Fully Implicit Newton-Krylov Time Step

 $M\dot{u} = r$

$$\mathbf{M}\left(\frac{\mathbf{u}^{+}-\mathbf{u}^{-}}{h}\right) = \theta \mathbf{r}^{+} + (1-\theta)\mathbf{r}^{-}$$
$$\mathbf{R}\left(\mathbf{u}^{+}\right) \equiv \mathbf{M}\left(\mathbf{u}^{+}-\mathbf{u}^{-}\right) - h\left[\theta \mathbf{r}^{+} + (1-\theta)\mathbf{r}^{-}\right] = 0$$
$$\mathbf{J} \equiv \mathbf{M} - h\theta \left\{\frac{\partial r_{i}^{+}}{\partial u_{j}^{+}}\right\}$$

 $\mathbf{R} + \mathsf{J}\delta \mathbf{u}^{+} = \mathbf{0}, \quad \delta \mathbf{u}^{+} = -\mathsf{J}^{-1}\mathbf{R}\left(\mathbf{u}^{+}\right), \quad \mathbf{u}^{+} \to \mathbf{u}^{+} + \delta \mathbf{u}^{+}$

- Nonlinear Newton-Krylov iteration.
- Elliptic equations: $\mathbf{M} = 0$.
- Static condensation, fully parallel.
- PETSc: GMRES with Schwarz ILU, overlap of 3, fill-in of 5.

Static Condensation

$$\mathbf{L}\mathbf{u} = \mathbf{r} \tag{1}$$

Partition: (1) element edges: (2) element interiors

$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \end{pmatrix}, \quad \mathbf{L} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix}$$
(2)

$$\mathbf{L}_{11}\mathbf{u}_1 + \mathbf{L}_{12}\mathbf{u}_2 = \mathbf{r}_1 \tag{3}$$

$$\mathbf{L}_{22}\mathbf{u}_2 = \mathbf{r}_2 - \mathbf{L}_{21}\mathbf{u}_1 \tag{4}$$

$$\bar{\mathbf{r}}_{11} \equiv \mathbf{L}_{11} - \mathbf{L}_{12} \mathbf{L}_{22}^{-1} \mathbf{L}_{21}$$

$$\bar{\mathbf{r}}_{1} \equiv \mathbf{r}_{1} - \mathbf{L}_{12} \mathbf{L}_{22}^{-1} \mathbf{r}_{2}$$
(5)

$$\bar{\mathbf{L}}_{11}\mathbf{u}_1 = \bar{\mathbf{r}}_1 \tag{6}$$

Equation (4) solved by local LU factorization and back substitution.
Equation (6), substantially reduced, solved by global Newton-Krylov.

Linear Ideal MHD

 $\mathbf{B} = (\sin\theta\cos\phi, \ \sin\theta\sin\phi, \ \cos\theta)$

$$\rho \frac{\partial \mathbf{v}}{\partial t} = \mathbf{j} \times \mathbf{B} - \nabla p, \quad \mathbf{j} = \nabla \times \mathbf{b}$$
$$\frac{\partial \mathbf{b}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}), \quad \nabla \cdot \mathbf{b} = 0$$
$$\frac{\partial p}{\partial t} + \gamma P \nabla \cdot \mathbf{v} = 0, \quad \mathbf{b} = b_z \hat{\mathbf{z}} + \hat{\mathbf{z}} \times \nabla \psi$$

Flux-Source Form

 $\mathbf{u} \equiv (\rho v_x, \ \rho v_y, \ \rho v_z, \ \psi, \ b_z, \ p)$

 $\frac{\partial}{\partial t} \left(\rho \mathbf{v} \right) + \nabla \cdot \mathbf{T} = 0, \quad \mathbf{T} \equiv \left(p + \mathbf{b} \cdot \mathbf{B} \right) \mathbf{I} - \left(\mathbf{b} \mathbf{B} + \mathbf{B} \mathbf{b} \right)$

$$\frac{\partial \psi}{\partial t} = \hat{\mathbf{z}} \cdot \mathbf{v} \times \mathbf{B}, \quad \frac{\partial b_z}{\partial t} + \nabla \cdot (\mathbf{v}B_z - \mathbf{B}v_z) = 0$$

$$\frac{\partial p}{\partial t} + \nabla \cdot (\gamma P \mathbf{v}) = 0$$

Frequencies and Polarizations

$$\begin{aligned} \frac{\partial^2 \mathbf{v}}{\partial t^2} &= c_A^2 \left\{ \nabla \times \left[\nabla \times (\mathbf{v} \times \mathbf{n}) \right] \right\} \times \mathbf{n} + c_S^2 \nabla \nabla \cdot \mathbf{v} \\ \mathbf{v}(\mathbf{x}, t) &= \mathbf{v}_0 \exp \left[i \left(\mathbf{k} \cdot \mathbf{x} - \omega t \right) \right], \quad \mathbf{L} \cdot \mathbf{v}_0 = 0 \\ \mathbf{L} &= c_A^2 \left[k_{\parallel}^2 \mathbf{l} - k_{\parallel} (\mathbf{kn} + \mathbf{nk}) + \mathbf{kk} \right] + c_S^2 \mathbf{kk} - \omega^2 \mathbf{l} \\ \det \mathbf{L} &= \left(k_{\parallel}^2 c_A^2 - \omega^2 \right) \left[k^2 k_{\parallel}^2 c_A^2 c_S^2 - \omega^2 k^2 \left(c_A^2 + c_S^2 \right) + \omega^4 \right] = 0 \\ \hat{\mathbf{e}}_1 &\equiv \mathbf{n} = \frac{\mathbf{B}}{B}, \quad \hat{\mathbf{e}}_2 &\equiv \frac{\mathbf{k} \times \mathbf{B}}{|\mathbf{k} \times \mathbf{B}|}, \quad \hat{\mathbf{e}}_3 &\equiv \hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2, \quad \mathbf{B} = B \hat{\mathbf{e}}_1, \quad \mathbf{k} = k_{\parallel} \hat{\mathbf{e}}_1 + k_{\perp} \hat{\mathbf{e}}_3 \\ \mathbf{L} &= \left(c_A^2 k_{\parallel}^2 - \omega^2 \right) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \left(c_A^2 + c_S^2 \right) \begin{pmatrix} k_{\parallel}^2 & 0 & k_{\parallel} k_{\perp} \\ 0 & 0 & 0 \\ k_{\parallel} k_{\perp} & 0 & k_{\perp}^2 \end{pmatrix} - c_A^2 k_{\parallel} \begin{pmatrix} 2k_{\parallel} & 0 & k_{\perp} \\ 0 & 0 & 0 \\ k_{\perp} & 0 & 0 \end{pmatrix} \end{aligned}$$

For
$$\omega^2 = c_A^2 k_{\parallel}^2$$
, $\mathbf{v}_0 = (0, 1, 0)$

For
$$\omega^2 = \frac{1}{2} \left\{ \left(c_A^2 + c_S^2 \right) k^2 \pm \left[\left(c_A^2 + c_S^2 \right)^2 k^4 - 4 c_A^2 c_S^2 k^2 k_{\parallel}^2 \right]^{1/2} \right\}, \quad \mathbf{v}_0 = (v_{\parallel}, 0, 1), \quad v_{\parallel} \equiv \frac{c_S^2 k_{\parallel} k_{\perp}}{\omega^2 - c_S^2 k_{\parallel}^2}$$

Selection of Parameters

Domain: x, y = (0,1); wave numbers: $kx = ky = 2\pi$.

→ Grid parameters: (nx, ny, np, procs) = (8, 8, 2, 8), (4, 4, 4, 8), (2, 2, 8, 4).

> Magnetic field: spherical coordinates about z axis:

- $Bx = \sin \theta \cos \phi$, $By = \sin \theta \cos \phi$, $Bz = \cos \theta$
- $\theta = 90^{\circ}$ (in x-y plane), $\phi \rightarrow 135^{\circ}$ (approaching transverse propagation).

≻ Beta: 10%.

- > Time: tmax = shear Alfven period, dt = tmax/64, nt = 64, polarization = Shear Alfven.
- > Solution procedure: GMRES, ILU-5 preconditioning + static condensation for np > 2.

> Reported Results

- Ksp: number of GMRES iterations in 64 time steps
- Cpu: run time on Linux cluster, 3.1 GHz Xeons, Gigabit network
- Errt: relative error in wave period.
- Errx: relative spatial truncation error, from convergence of polynomials
- CFL: Courant number relative to fast wave frequency, $\omega_f dt$.

Measurement of Wave Period

Summary of Numerical Results

➤ (nx, ny, np, procs) = (8, 8, 2, 8)

- No static condensation
- For $\varphi = 130, 131, 132, 133$:
 - o Ksp = 770, 1023, 1472, 2792
 - o Cpu = 8.6, 9.9, 13.4, 22.7 s
- Errx = 10%, Errt ~ 8×10^{-4} , CFL = 2.9
- ➤ (nx, ny, np, procs) = (4, 4, 4, 8)
 - Static condensation
 - For $\phi = 130 134.9999$
 - o Ksp = 64 128
 - o Cpu $\sim 4 s$
 - Errx ~ $3x10^{-4}$, Errt ~ $8x10^{-4}$, CFL = $5x10^{4}$
- ➤ (nx, ny, np, procs) = (2, 2, 8, 4)
 - Static condensation
 - For $\phi = 130 134.9999$:
 - o Ksp = 64 137
 - o Cpu $\sim 6 8$ s
 - Errx ~ 10^{-8} , Errt ~ $8x10^{-4}$, CFL = $5x10^{4}$

Conclusions

- ➢ Accurate computation of shear Alfven and slow waves as $\mathbf{k} \cdot \mathbf{B} \rightarrow 0$ is essential for study of tokamak stability.
- > Stiffness makes this numerically challenging.
 - Explicit methods require very small time steps.
 - Implicit methods have very large condition numbers.
- Spectral elements provide rapid convergence + parallelization.
- Static condensation is very effective in treating large condition numbers.
- Precise study of linear wave motion provides an important test bed for numerical properties.