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Introduction

e In this work, an integral (nonlocal) closure for the parallel ion stress
is presented,

™ = m/d3fv('vﬁ — v% /2)F,

where v| and v, are the parallel and perpendicular particle speeds.

Features of ™| closure

® Integral or monlocal closure implies analytic forms involving integra-

tions along characteristics of the perturbed distribution function,
F

e Allowing for arbitrary collisionality and requiring momentum con-
servation among ion species couples m| to a nonlocal momentum
restoring term.

Importance of m| closure

e Unified | needed to capture anisotropic nature of momentum trans-
port in ion (plasma) flow evolution equation which has large parallel
ion stress force density, V - I, = V - (bb — I/3)m), in moderately
collisional to nearly collisionless plasmas.

e Unified m may account for anomalous ion heating, vV . I1, in
moderately collisional to nearly collisionless plasmas.



Solve simplified Chapman-Enskog-like (CEL)
drift kinetic equation.

e Use following Ansatz:
m s ( m(¥ — @)?
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and average full CEL kinetic equation over gyroangle to write
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Assumptions

1. sheared slab magnetic geometry (ignores particle drifting and
trapping),
2. steady-state limit (w — 0),

3. omission of heat flow term and associated temperature gradient
drive (focus on flow gradient drive).



Employ pitch-angle scattering operator with
momentum restoring term.

e The Lorentz scattering operator plus momentum restoring term is
given by

(C(F' + fa)) = L(F' + fap) + v N for
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where pitch-angle-type variable, §{ = +,/1 — v% /v?

e Setting / d3vv) (C(F* 4 f},)) = 0 to ensure momentum conservation
within ion species yields

,)\/’” = /d?’vuv” (2(v||uﬁ/vt2h)fj?,_, — L(F1)> //d‘q’vvvﬁf}\]/[,

hence,

C(F' + 1)) =~ ve(FY) — 2y, 0.,
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where

t = /d%uvﬁf&, and U = /d3VVV||£(F1).



Simplified kinetic equation captures dominant
physics of parallel ion dynamics

e Kinetic equation of interest becomes:
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where ) - V has been written v£€d/0L and P;(¢) = £ and Py(¢) =

(3¢2 — 1)/2 are Legendre polynomials.

Approximations

. pitch-angle scattering with momentum restoring term,
. sheared slab magnetic geometry,

. steady-state limit,

_ W N =

. focus on flow gradient drive.



Solve kinetic equation by expanding in
pitch-angle basis.

e Expand F in set of N Legendre polynomials:

LF) =L 5 Fa(, D)Pa(€) = X Falw, DAuPa(€),

with associated eigenvalues, A,.

e Write F = [F1, F», ..., FN] and apply orthogonality:

where 7 = v/2.

e I is the identity matrix, the tridiagonal matrix A contains free stream-
ing couplings between different eigenfunctions and G is projection
of the drives onto eigenfunctions.

e Invert ODE operator, IF + %A% to write:

Jzzngj/dL'
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where a; ; and b; ; and effective inverse collision lengths k|; = 7 /(v;v)
are generated upon inverting the ODE operator.



Construct unified form for 71'”

e Employ the following moment definitions
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where second moment forces parallel flow moment of F to vanish.

e Integrate over pitch-angle dependence to write:
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Important features of m) closure

1. Nonlocal 7| couples to nonlocal momentum restoring term, U =
S d3’UV’U||£(F).

2. Nonlocality of both terms results from deriving closures for ar-
bitrary collisionality.



Integrate by parts to derive symmetric form.

e Interchange order of integration over v and L’ and integrate by parts
to write:
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where A is
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e Unified form for 7| which introduces concept of nonlocal momentum
conservation that results when collision lengths are long compared
to parallel flow gradient scale lengths.



Can also write ™| closure as coupled Volterra

equations.

e Again interchange the order of integration and integrate the differ-
entiated terms in Eq. (1) by parts to write

Kua(U)) + Kaa(my) = [ dE (uy(E + I+ wy(E - D) K4 | gy ),
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where the boundary terms are
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Nonlocal closure unifies ion stress.

e When collisions localized integrals along magnetic field:

8u||
= My T

where the viscosity, p,, is
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Coefficient 2.75 lies between the collisional viscosity coefficients of
Braginskii 2, 1.81, and Chang/Callen 3, 3.13.

¢ In nearly collisionless limit, p, becomes

2

v
— 1.04—t_,
Ky kv

In Chang/Callen the coefficient in front of this expression is (3/5)/7 =
1.06. Here the stress is due solely to wave-particle Landau interac-

tions.

28. 1. Braginskii, Transport Processes in a Plasma, Consultants Bureau, New York, edited by M. A. Leontovich, 1, 1965
37. Chang and J. D. Callen, Phys. Plasmas, 4, 1167 (1992)
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Unified T I approximate for all collisionalities.

e Parallel stress for sinusoidal flow perturbations of scale length, L,

u) (L) = u sin (%), shows behavior as collision length L, is varied:
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Nonlocal )| contains physics of pressure
anisotropy.

e Chew-Golberger-Low pressure tensor is :

P = p;bb + p. (I — bb),

e Using p = (p; 4+ 2p.)/3 and II = P — pl yields
IT = (p; — p.)(bb — 1/3),

where p| = m [ d’vvj{f and p; = m[d’v(v]/2)f.

e In this work

2
I = m [ d®(v} — %)F(BB _1/3).

e Note, however, that unlike purely collisionless form for CGL stress,
F contains collisional information and is more general than bi-Maxwellian
distribution associated with CGL form.

%G. F. Chew, M. L. Goldberger and F. E. Low, Proc. Roy. Soc. (London), A 236, 112 (1956)
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Test || closure in slab island geometry.

e Evolve zero-8 plasma momentum equation in slab island geometry
to determine effect of stress anisotropy on steady-state flow profile:

a — - — — —
m,n(a—I—a’V)ﬂ':JxB—V H”z V.I11;.

e Evolve finite-3 plasma momentum and temperature evolution equa-
tions to determine steady-state viscous heating:
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Conclusions

e Unified form for parallel ion stress, m, has been constructed

e Viscosity coefficient, p), maps continuously from collisional to nearly
collisionless regimes with

Ky
(v, /vii)

in collisional regime and

1-81Braginskii < =2.75 < 3'130hang/Callen’

L]
(v, /K vin)

in nearly collisionless regime.

=1.04 = ]_.OGChang/Callen

e Nonlocal 7| couples to nonlocal momentum restoring term intro-
ducing novel concept of nonlocal, momentum conserving collision
operator.

e Addition of 6-1’[” = 6-(55—1/3)77” to plasma flow evolution equation
captures anisotropic nature of momentum transport in moderately
collisional to nearly collisionless plasmas

e Unified m| may account for anomalous ion heating, II} : 6‘7, in
moderately collisional to nearly collisionless plasmas.
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