M3D CDX-U Benchmark Status Josh Breslau PPPL

CEMM Meeting Missoula, Montana April 25, 2004

<u>Characteristics of the Current Drive</u> <u>Experiment Upgrade (CDX-U)</u>

- Low aspect ratio tokamak $(R_0/a = 1.4 1.5)$
- Small ($R_0 = 33.5 \text{ cm}$)
- Elongation $\kappa \sim 1.6$
- $B_T \sim 2300$ gauss
- $n_e \sim 4 \times 10^{13} \text{ cm}^{-3}$
- $T_e \sim 100 \text{ eV}$
- $I_p \sim 70 \text{ kA}$
- Soft X-ray signals from typical discharges indicate two predominant types of low-*n* MHD activity:
 - sawteeth
 - "snakes"

The TSC Sequence

TSC follows 2D (axisymmetric) evolution of typical CDX-U discharge

Equilibrium at t=12.40ms (as q_0 drops to 0.92) is used to initialize 3D runs

Device Aspect Ratio (Low-A) Case

Large Aspect Ratio Case

Baseline Parameters for Cross-code

Benchmark

Lundquist Number S	$\sim 2 \times 10^4$ on axis.
Resistivity η	Spitzer profile $\propto T_{eq}^{-3/2}$, cut off at 100× η_0
*Prandtl Number <i>Pr</i>	10 on axis.
*Viscosity <mark>µ</mark>	Constant in space and time.
*Perpendicular thermal conduction κ_{\perp}	0
*Parallel thermal conduction $\kappa_{//}$	0
Peak Plasma <mark></mark>	~ 3×10^{-2} (low-beta).
Density Evolution	Turned on for nonlinear phase.
Nonlinear initialization	Pure $n=1$ perturbation such that $\frac{\max(B_{pol}^1)}{\max(B_{\phi}^0)} = 10^{-4}$

*Non-physical values chosen to aid in cross-code benchmark.

Comparing the Codes

M3D and NIMROD are both parallel 3D nonlinear extended MHD codes in toroidal geometry maintained by multi-institutional collaborations, and comprise the two members of the Center for Extended MHD Modeling (CEMM) SciDAC.

<u>M3D</u>

- Uses linear finite elements in-plane.
- Uses finite differences between planes or pseudo-spectral derivatives.
- Partially implicit treatment allows efficient time advance but requires small time steps.
- <u>Linear</u> operation: full nonlinear + filtering, active equilibrium maintenance.
- <u>Nonlinear</u> operation: all components of all quantities evolve nonlinearly.

<u>NIMROD</u>

- Uses high-order finite elements inplane.
- Uses Fourier decomposition in toroidal direction.
- Fully implicit treatment requires costly matrix inversions but allows large time steps.
- <u>Linear</u> operation: evolve perturbations to particular modes only.
- <u>Nonlinear</u> operation: perturbations to fixed equilibrium are evolved, with nonlinear couplings between modes.

Poloidal Meshes for the low-A Case

- 89 radial zones, up to 267 in θ in unstructured mesh
- Linear basis functions on triangular elements
- Conducting wall
- Finite differences toroidally; 24 planes

NIMROD

- 40×24 structured grid
- 4th order basis functions on quadrilateral elements
- Conducting wall
- Fourier decomposition toroidally; 10 or more modes retained

Incompressible velocity Toroidal current density stream function U J_{ϕ}

> $\gamma \tau_{\rm A} = 3.28 \times 10^{-2} \rightarrow \text{growth time} = 30.5 \ \tau_{\rm A}$ Agrees with NIMROD value to within 7%.

Large Aspect Ratio: Nonlinear Kinetic Energy History

Large Aspect Ratio: Nonlinear Time Series

Poincaré Plots

Large Aspect Ratio: Nonlinear Time Series

Poincaré Plots, Continued

<u>All</u> islands visible in these plots have toroidal mode number n=1. Note: Run halted because of onset of stochasticity.

Low Aspect Ratio:

<u>n=1 Eigenmode</u>

Incompressible velocity stream function U

Toroidal current density J_{ϕ}

 $\gamma \tau_{\rm A} = 8.61 \times 10^{-3} \rightarrow \text{growth time} = 116 \tau_{\rm A}$

Predicted Eigenmode Shows

Qualitative Agreement with NIMROD

Low Aspect Ratio: <u>Higher *n* Eigenmodes</u>

Incompressible velocity stream function U

Low Aspect Ratio: Nonlinear Kinetic Energy History

"Linear" high-*n* modes are driven, not eigenmodes Incompressible velocity stream function *U*

Component of "linear" mode in nonlinear run

Low Aspect Ratio: Nonlinear Time Series

Poincaré Plots

Low Aspect Ratio: Nonlinear Time Series

Poincaré Plots, Continued

Disruption occurs before completion of sawtooth crash.

Focus on Saturation Time *t*=1710.38

(Time when *n*=2 kinetic energy peaks)

Flow Stabilization of the *n*=1 Mode in the low-A MHD Case

Extended MHD Effects

(Initial density profile uniform)

	MHD			MHD + ω_i^* term		
Evolving Density	n=1 n=4	$ \begin{array}{c} v_{\parallel} / v_{A} = 0 \\ (\chi_{\parallel} \text{ off}) \\ 0.016 \\ 0.0307 \\ \end{array} $	$v_{\parallel}/v_{A} = 2.5$ (χ_{\parallel} on) 0.014 0.0075	n=1 n=4	$v_{\parallel}/v_{A} = 0$ (χ_{\parallel} off, H=0.10) 0.0165 0.0304	$v_{\parallel}/v_{A}=2.5$ (χ_{\parallel} on, H=0.15) 0.0137 0.0095
Constant Density	n=1 n=4	$v_{\parallel}/v_{A}=0$ (χ_{\parallel} off) 0.017 0.0349	$v_{\parallel}/v_{A}=2.5$ (χ_{\parallel} on) 0.021 0.0132	<i>n</i> =1 <i>n</i> =4	$v_{\parallel}/v_{A} = 0$ (χ_{\parallel} off, H=0.15) 0.021 0.0354	$v_{\parallel}/v_{A} = 2.5$ (χ_{\parallel} on, H=0.15) 0.021 0.0123

- Large parallel thermal conductivity reduces growth rate of higher *n* modes.
- ω_i^* term alone does <u>not</u> have stabilizing effect on either mode.

n=4 Eigenmodes, Evolving Density

MHD

 $\chi_{\parallel} = 0$

 $\chi_{\parallel} \neq 0$

 $\underline{\text{MHD}} + \omega^*$

<u>Summary</u>

- All toroidal modes of the q_{min} = 0.92 CDX equilibrium are linearly MHD-unstable.
 - n = 1 is an internal kink mode
 - *n* >1 are ballooning instabilities
 - Higher *n* modes have higher growth rates.
- Nonlinear MHD evolution beginning with just an *n*=1 perturbation disrupts within a sawtooth crash time.
 - High poloidal mode number *m* components of the *n*=1 mode interact to create islands, stochasticity in outer region.
 - *n* =1 mode couples to and drives higher *n* modes at *q*=1 rational surface to create stochasticity in inner region.
- Adding toroidal flow to the model reduces the growth rate of the n=1 mode.
- Adding large parallel thermal conductivity (via artificial sound wave) has a stabilizing effect on higher *n* modes, but not on *n*=1.
- Adding the ω^* term to the MHD equations does not appreciably alter the growth rates of either the n=1 or the n>1 modes.

Future Work

Previous studies¹ indicate that resistive interchange modes can be stabilized with a sufficiently large Hall term:

- Run linear and nonlinear cases with Hall term on.
- Run linear and nonlinear cases with heat conduction on.
- Do convergence studies.

¹J. DeLucia, S.C. Jardin, and A.H. Glasser, *Phys. Fluids* **27** (6), 1470 (1984).