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Outline

• Linear wave propagation tests
– Formulation
– Phase velocity diagram
– Error analysis

• Other verifications
• Unsplit Godunov algorithm
• Status of AMRMHD Code
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Linear Waves: Formulation
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Linear Waves : Formulation
• Domain [0:2]x[0:2] 
• Wavenumber vector: kx=n π, ky= m kx

– (n,m)=(1,1), (1,2), (1,3)

• Angle between wave direction and B0 varied from 0 to π/2
• Amplitude of waves ε=10-5

• Equilibrium state: {ρ0,0,0,0,Bx,0, By,0, p0}
– ρ0=1, p0=0.1
– |B0|=1

• tend¼ 2
• Computed with nonlinear code (nonlinearities ~ O(ε2))
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Linear Waves: Wave Phase Velocity 

• Lin V=V_0 + 
• Dispersion relation

– Alfven wave
– Fast and slow 

magnetosonic waves
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Linear Waves: Error Fast Wave 
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Linear Waves: Error Slow Wave 
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Linear Waves: Error Alfven Wave 
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Linear Waves: Accuracy 
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Linear Waves: Accuracy 
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Linear Waves: Accuracy 
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Linear Waves: Wave number dependence
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Linear Waves: Square Wave
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Linear Waves: Summary

• Reproduced the theoretical phase diagram
• Error is O(h^2) 
• Similar results for wave vector k=(1,2) and 

(1,3) 
• Energy and mass is conserved to machine 

precision
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Linear Waves: Case with AMR
• Energy and mass is 

conserved to machine 
precision

• Flux-refluxing imposed
• No obvious spurious 

reflections at coarse-fine 
boundaries

• Fast wave k=(1,1) α=20o
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Code Verification: MHD Shock Refraction
• For regular refraction at the 

contact discontinuity, in a 
small neighborhood of the 
point where all 
discontinuities meet, the 
MHD PDEs can be 
reduced to algebraic 
equations.  

• TF and RF are fast shocks

• Local analysis shows that 
the RS is a slow shock, 
while shock TS is a 2-4 
intermediate shock. (V. 
Wheatley, D. I. Pullin, R. 
Samtaney, Journal of Fluid 
Mechanics)
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Numerical Method:  Finite Volume Approach

• Conservative (divergence) form 
of conservation laws:

• Volume integral for 
computational cell:

• Fluxes of mass, momentum, 
energy and magnetic field 
entering from one cell to 
another through cell interfaces.

• This is a Riemann problem.

dU
dt

+ ∇ ⋅F = S

dUi, j ,k

dt
= − A ⋅F

faces
∑ + Si, j ,k
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Numerical Method
• Hyperbolic fluxes determined using the unsplit upwinding method (Colella, J. Comput. 

Phys., Vol 87, 1990)

– Predictor-corrector (2nd order in time)
– Fluxes obtained by solving Riemann problem
– Good phase error properties due to corner 

coupling terms
– Modification: Bn

i§ ½=Bn
i,

• MHD Equations written in symmetrizable near-conservative form 
(Godunov, Numerical Methods for Mechanics of Continuum Media, 1,  1972, Powell et al., 
J. Comput. Phys., vol 154, 1999).

• The symmetrizable MHD equations lead
to the 8-wave method. 
– The fluid velocity advects both

the entropy and div(B)
– Modification: RP returns average of left/right 

states for Bn

– Method may be viewed as 7-wave + Stone correction 
because in the final corrector step we have projected out r.B
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∇⋅B=0 by Projection

• Compute the estimates to the fluxes Fn+1/2
i+1/2,j using the unsplit

formulation

• Use face-centered values of B to compute ∇⋅ B.

• Solve the Poisson equation ∇2φ = ∇⋅ B

• Correct B at faces: B=B-∇φ

• Correct the fluxes  Fn+1/2
i+1/2,j with projected values of B

• Update conservative variables using the fluxes

• Poisson equation solved using multigrid using GSRB for smoothing and 
BiCGStab as the bottom smoother



21

Status of AMRMHD Code
• Solves single fluid resistive MHD equations written in conservation form

– Used to study reconnection
– Both explicit and implicit treatment of resistive/viscous term
– Implicit treatment requires variable coefficient elliptic solvers with AMR

• Elliptic solvers require solve of the full hierarchy for during synchronization of 
coarse-fine boundary fluxes 

• Handling nonlinear properties still not implemented
• Study of pellet injection in tokamaks

– Source terms to handle toroidal geometry (See poster 1C33 Monday 10AM-
Noon)

– Differences in HFS and LFS pellet lauches
• Work in progress towards fully nonlinearly implicit Jacobian Free 

Newton-Krylov implementation (with D. Reynolds and C. Woodwards, 
TOPS Center, LLNL)
– Works for simple test problems for compressible MHD equations without 

preconditioning and without mesh adaptivity
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Future Directions
• 3D wave propagation tests
• Mapped grids (flux tube coordinates) for pellet 

injection simulations
• Higher order (fourth order) to better handle anisotropy
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