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Motivation
• Model resistive MHD events in a tokamak plasma 

using realistic physical values to make quantitative 
predictions.

– Large tokamaks have large disparities in spatial and 
temporal scales to be resolved.

• Resistive MHD: Current sheet thickness ~ S-1/2

• Two-fluid MHD: ion skin depth ~ n-1/2

– Small tokamaks operate in regimes accessible to present-
day codes.



Characteristics of the Current Drive 
Experiment Upgrade (CDX-U)

• Low aspect ratio tokamak 
(R0/a = 1.4 – 1.5)

• Small (R0 = 33.5 cm)
• Elongation κ ~ 1.6
• BT ~ 2300 gauss
• Ip ~ 70 kA
• ne ~ 4×1013 cm-3

• Te ~ 100 eV → S ∼ 104

• Discharge time ~ 12 ms

• Soft X-ray signals from 
typical discharges indicate two 
predominant types of low-n
MHD activity:
– sawteeth
– “snakes”



Equilibrium: q0 < 1

• Questions to 
investigate:
– Linear growth rate 

and eigenfunctions
– Nonlinear evolution

• disruption?
• stagnation?
• repeated 

reconnections?

• Equilibrium taken from a 
TSC sequence (Jsolver 
file).

• qmin ≈ 0.922
• q(a) ~ 9
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Baseline Parameters for CDX
Lundquist Number S ~2×104 on axis.

Resistivity η Spitzer profile ∝Teq
-3/2, cut off at 100× η0

Prandtl Number Pr 10 on axis.

Viscosity µ Constant in space and time.

Perpendicular thermal 
conduction κ⊥

Original study: 0
Followup study: 200 m2/s (measured value)

Density Evolution Turned on for nonlinear phase.

Nonlinear initialization Pure n=1 perturbation such that 

Parallel thermal 
conduction (sound 

wave)

Original study: 0
Followup study: VTe = 6 VA

Peak Plasma β ~ 3 × 10-2 (low-beta).
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Poloidal Mesh for CDX
• 89 radial zones, up to 267 in θ in 
unstructured mesh

• Linear basis functions on triangular 
elements

• Conducting wall; current drive applied 
by adding a source term in Ohm’s law.

• Finite differences toroidally; 24 planes



n=1 Eigenmode
Incompressible velocity

stream function U
Toroidal current density

Jφ

γτA = 8.61× 10-3 → growth time = 116 τA



Higher n Eigenmodes
Incompressible velocity

stream function Un = 2 n = 3

...

m ≥ 5
γτA = 1.28 × 10-2

m ≥ 7
γτA = 1.71 × 10-2



In Absence of Heat Conduction,
Higher n Resistive Ballooning Modes are More Unstable than 

Internal KinkGrowth Rates
n γτA
1 ———
2     0.00872*
3        0.0128
4        0.0164
5        0.0191
6        0.0208
7        0.0212
8        0.0203
9        0.0178
10       0.0134

Nonlinear, q0=1.04;
η0=2×10-5; κ = 0

γ ∝ η0.6



Parallel Heat Conduction Reduces Growth Rates But Does Not 
Stabilize the Ballooning Modes

n= 1

η0=2×10-5; κ⊥ = 0; κ║ on

Growth Rates
n γτA
1 ———
2        ———
3        ———
4        0.00504
5        0.00761
6        0.00900
7        0.00945
8        0.00869
9        0.00652
10        ———



High Perpendicular Heat Conduction Stabilizes All Ballooning 
Modes

n= 1n=1

η0=2×10-5; κ⊥ = 9.09×10-4; κ║ off



Nonlinear Evolution, Heat Conduction On

1st sawtooth crash 2nd sawtooth crash

Sawtooth period ≈ 390 τA ≈ 100 µs;
Reference CDX sawtooth period ≈ 125 µs



Nonlinear Evolution, Heat Conduction On



Initial state: t = 1266.17
Poincaré plot Temperature profile

q profile

qmin = 0.92



Late in linear phase: t = 1630.64
Poincaré plot Temperature profile

q profile

qmin = 0.84



Nonlinear phase: t = 1795.61
Poincaré plot Temperature profile

q profile

qmin = 0.84



During 1st Crash: t = 1810.51
Poincaré plot Temperature profile

q profile

qmin = 1.00



After 1st Crash: t = 1839.86
Poincaré plot Temperature profile

q profile

qmin = 1.01



Stochasticity healing: t = 1944.27
Poincaré plot Temperature profile

q profile

qmin = 0.93



Flux surfaces recovered: t = 2094.08
Poincaré plot Temperature profile

q profile

qmin = 0.86



After 2nd Crash: t = 2228.62
Poincaré plot Temperature profile

q profile

qmin = 1.00



After 2nd recovery: t = 2498.25
Poincaré plot Temperature profile

q profile

qmin = 0.85



Characterizing Field Line Structure 
with Fractal Dimension

• The dimensionality of a field line inside the separatrix of a tokamak 
provides information relevant to confinement.

– Lines tracing out irrational surfaces are two-dimensional.
– Lines tracing out rational surfaces are one-dimensional.
– Stochastic field lines are space-filling and potentially three-dimensional.

• The extent to which stochastic lines fill space may give an indication of the 
effect of parallel heat conduction on radial transport.

• A measure of non-integer dimensions in data sets is provided by the 
Hausdorff-Besicovitch fractal dimension

)/1ln(
)(lnlim

0 ε
ε

ε

ND
→

=

where N(ε) is the minimum number of hypercubes of linear size ε necessary to
cover all points in the set.



Fractal Dimension: Good Flux Surfaces
t = 1266.17

magnetic axis



Fractal Dimension: Large Islands
t = 1795.61

magnetic axis



Fractal Dimension: High Stochasticity
t = 1839.86

magnetic axis



Fractal Dimension: Moderate Stochasticity
t = 1944.27

magnetic axis



Conclusions
• Nonlinear MHD simulation with actual device parameters is 

capable of tracking evolution through repeated sawtooth 
reconnection cycles.

• The fractal dimension diagnostic reliably identifies different 
field line types, but must demonstrate greater sensitivity to 
degrees of stochasticity if it is to prove more useful than simple 
inspection of Poincaré plots. Other diagnostics should be 
considered.

• Quantitative comparisons with experimental data will first 
require more careful attention to assumptions of the model.
– Loop voltage (Ohmic) current drive in device vs. current source term in 

code.
– Self-consistent Ohmic heating and evolving resistivity profile must be 

implemented.
– Inclusion of two-fluid terms is likely to alter time and space scales of 

the sawtooth reconnection events.
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