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Introduction
• Modeling the evolution of MHD-like 

instabilities poses many challenges.
– The modes extend over the device scale 

and are therefore sensitive to geometry.
– Nonlinear effects are required to 

understand how magnetic topology and 
confinement are affected.

– There are extreme anisotropies with 
respect to the direction of the evolving 
magnetic field.

– The time-scales for wave propagation and 
nonlinear evolution are separated by 
many orders of magnitude.

NIMROD simulation of high-β
disruption in DIII-D.  [Courtesy 

of Scott Kruger, Tech-X]



Introduction (continued)
• Two-fluid contributions, such as the Hall electric field and 

gyroviscosity, are known to be important for macroscopic 
dynamics.
– Drift effects lead to rotation and change stability thresholds.
– Magnetic reconnection changes qualitatively with two-fluid 

effects.
• Two-fluid nonlinear macroscopic simulation requires numerical 

algorithms that can deal with greater ranges of temporal and 
spatial scales.
– For resistive MHD, the NIMROD code uses a semi-implicit 

method with flow velocity staggered in time from magnetic 
field and pressure [JCP 195, 355 (2004)].

– Here, we investigate and analyze possible algorithms for 
incorporating two-fluid effects.

– The analyses and test results have led us to a leap-frog scheme 
with implicit steps.



Non-Ideal Hall MHD Model
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• Like other algorithms for MHD and extended-MHD, we cast the 
evolution equations in a single-fluid form.

• The relations used for E, Π, and qα determine which theoretical 
model is solved.  [resistive MHD, two-fluid, kinetic effects, etc.]

0=⋅∇ B divergence constraint



Numerical Analyses
• A semi-implicit Hall-MHD algorithm based on [Harned and 

Mikic, JCP 83, 1 (1989)] had been implemented in NIMROD.
– Tests of waves in homogeneous equilibria demonstrated 

numerical stability for EMHD but not HMHD.
– In general, numerical dispersion relations contain truncation 

errors, are not Hermitian, and are more complicated than 
corresponding analytic dispersion relations.

– We were able to apply von Neumann stability analysis to the 
EMHD system by hand but found the numerical HMHD 
analysis to be too cumbersome.  

• We therefore developed the ‘DISPERSION’ code for rapid 
construction and analysis of general linear algebraic systems.



DISPERSION scans a wavenumber parameter and 
evaluates the spectra of analytical and numerical linear 
systems.

• LAPACK routines for general linear systems are used to allow 
non-Hermitian matrices and ‘defective’ matrices (matrices where 
the set of eigenvectors do not form a complete basis). [Golub and 
van Loan, Matrix Computations]

– Step 1: ZGEBAL separates triangular parts
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– Step 2: ZGEHRD forms the upper Hessenberg H,

– Step 3: ZHEQR performs QR-factorization from the upper Hessenberg 
matrix.

• T is the Schur matrix, and eigenvalues appear on the diagonal.
• Nonzeros above the diagonal only appear for repeated eigenvalues 

with geometric multiplicity < algebraic multiplicity.

– Step 4: ZTREVC determine eigenvectors if desired.
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The normalizations and post-processing conventions used 
in DISPERSION are:

• Time is normalized with the ion cyclotron frequency (Ωi).

• Wavenumbers are normalized with the ion skin-depth (c/ωi).

• In these units, 

• For numerical analysis, the eigenvalue of the time-step 
operation is reported as 
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Aside on DISPERSION: Coding is an F90 version of 
symbolic manipulation to create the linear time-step matrix.

c
c     invert the semi-implicit operator:
c

det=d_determ(si_v)
CALL d_cofactor(si_v,work1)
work1=TRANSPOSE(work1)/det

c
c     velocity advance:
c

mat=MATMUL(work1,si_v+jxb_v+grp_v)
c
c     pressure advance:
c

mat=MATMUL(iden+dvv_p,mat)
c
c     magnetic field advance:
c

mat=MATMUL(iden+vxb_b,mat)

Example for MHD without flow.
6-vector is (Vx,Vy,Vz,Bx,Bz,p) and k is in the y-direction.
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F90 coding, where si_v, jxb_v, etc. 
are 6×6 matrices.

Corresponding numerical time-
advance operation.

( ) 121  Find
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Δ+ Lt
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2/12/3 +++ ⋅∇Δ−= nnn ptpp Vγ

( )0
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• Matrices for complicated time-advances are also built from individual pieces, 
making it possible to analyze different algorithms quickly.



EXAMPLE: Analytical Dispersion Relations for Two-
Fluid Waves
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EXAMPLE: Numerical Leapfrog for MHD Only
Im(ω)>0 indicates numerical instability.

θ =0.04π Δt =1, cs
2/ vA

2=0.1. θ =0.46π
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EXAMPLE: Semi-Implicit MHD Leapfrog
Numerical dispersion provides stability at high-k.

θ =0.04π Δt =1, cs
2/ vA

2=0.1. θ =0.46π
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Semi-implicit algorithms for the Hall advance are intended 
to stabilize waves by adding numerical dispersion to the 
advance of magnetic field.

• A predictor/corrector advance is needed.  (B drives itself via 
the Hall term.)
• A self-adjoint fourth-order differential operator is 
recommended for the semi-implicit operator in [Harned-Mikic, 
JCP 83, 1 (1989)].  We initially used it in p&c steps.
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• Our implementation in NIMROD uses an auxiliary field, so 
that all terms in the weak form are integrable with C0 elements. 
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NIMROD tests and numerical analysis show that the 
semi-implicit Hall advance is stable for EMHD.

f=1, s=0.25
Δt =1, cs

2/ vA
2=0, f is P/C centering, and s is SI coefficient. (θ=0)
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Tests indicate numerical instability when the algorithm is 
applied to HMHD, as confirmed by analysis.

Δt =1, cs
2/ vA

2=0 (θ=0)
• The Hall advance of B is time-split from the MHD advance of B, 
and the Hall semi-implicit operator is applied to predictor and 
corrector steps.
• Note that with the same code, SI MHD and SI EMHD are stable.

f=0.54, sHall=0.92
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Applying the 4-th order operator to the corrector step only 
(with an unsplit B advance) initially looked promising. 

f=0.5, sHall=0.25, Δt =1, cs
2/ vA

2=0.1 
(θ=0.04π)

• The Hall semi-implicit operator is only 
applied to the corrector step.

• Bottom plot shows analytical dispersion 
for comparison.
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Numerical Semi-Implicit Hall-MHD (Unsplit B)

f=0.5, sHall=0.25, Δt =1, cs
2/ vA

2=0.1 
(θ=0.46π)

• Bottom plot shows analytical dispersion 
for comparison.

• Unfortunately, the NIMROD 
implementation found another 
numerical stability problem when 
applied to inhomogeneous equilibria.
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A new algorithm uses the leap-frog staggered data 
representation with a time-centered magnetic field update.

( ) ( )2/12/12/12 +++ ∇Δ−×Δ=ΔΔ+ nnn pttLt BJVρ

12/1 ++ ⋅∇Δ−=Δ nnptp Vγ

• This approach was motivated by the successful combination of the semi-implicit 
algorithm and time-centered advection (reported in 
http://www.cptc.wisc.edu/sovinec_research/meetings/sovinec_aps03poster.pdf)
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• The implicit Hall terms are linearized from the beginning of a time-step.



The leap-frog with implicit magnetic advance shows  
favorable numerical properties.
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New Leap-frog
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The leap-frog shows somewhat more numerical dispersion in 
the slow waves (for ωΔt >0.5) than a time-centered advance.
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NIMROD Implementation
• The new leap-frog scheme has been partly implemented in 
NIMROD.

• The two-fluid magnetic advance requires solution of a non-
Hermitian matrix.

• For 2D problems, we are able to solve non-Hermitian matrices 
using to the SuperLU software library.

• For nonlinear 3D problems, we will need a matrix-free iterative 
approach; generating 3D matrix elements with the Fourier 
representation of the toroidal angle is not practical.

• Parallel software for performing matrix-free system solves is 
available (PETSc, for example) and will be implemented.



Results on the GEM Challenge Problem
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Reconnected magnetic flux as a function of time.

• Since NIMROD does not have shock-capturing capabilities, dissipation is used 
to maintain some degree of smoothness.  With a 72×96 mesh of biquadratic 
elements, Pm=3 is required to achieve saturation.

• This comparison shows recent NIMROD Hall-MHD and resistive MHD results 
together with results published in Birn, Drake et al., JGR (2001).

• This problem has no guide field, and reconnection generates sonic flows well 
into the nonlinear phase of the 2-fluid computations.

• Resistivity η = 0.005

• NIMROD simulations have

• χiso = 0.005

• D = 0.005

• 0.005 ≤ ν ≤ 0.015



The NIMROD Hall-MHD computation with Pm=1 shows 
important characteristics of two-fluid reconnection.
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The characteristic results from t=23 Ωi
-1 are the open geometry of 

the reconnecting magnetic flux (left) and the quadrupole out-of-
plane magnetic field (right).

• See the next poster (Tian) for results on low-beta equilibria with a 
large guide field.



Out-of-plane current density and poloidal flux at t=23-24 Ωi
-1 

show sensitivity to viscosity.
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Conclusions
• Algorithms with a semi-implicit operator for stabilizing two-fluid 
waves (including whistler waves) are numerically unstable in the full 
HMHD system; though, they are stable for EMHD alone.  This finding 
may be at odds with what is published in [Harned and Mikic], however.

• A numerical tool for analyzing the spectra of general matrices has 
been constructed using LAPACK routines.  Time-steps are built-up in a 
symbolic way, which facilitates tests of different algorithms.

• A new leap-frog based scheme with an implicit magnetic field 
advance has been proposed, analyzed, and implemented in NIMROD. 
It is numerically stable for waves and has been exercised on the GEM 
Challenge problem.  Accuracy appears to be close to a fully centered 
advance, and the algebraic systems should be easier to solve.

• This presentation will be posted on nimrodteam.org and 
www.cptc.wisc.edu/sovinec_research.
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