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For a quasineutral plasma with one ion species of unit charge, and to leading order in

the small mass ratio limit m./m, — 0, the general system of fluid moment equations is:
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and the evolution equations for the CGL stress tensors, with p, = (2p,. + p.|)/3, are:
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The above system involves the following collisional moments:
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and the contributions from the collisional parts of the stress-flux tensors Q, (in partic-

ular the collisional perpendicular heat fluxes) can be neglected in the low collisionality

regimes of interest, characterized by v,/ l/ocf)ll 2, L.



The collision operators are taken in their complete, quadratic Fokker-Plank form:
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Formal manipulations on their velocity moments (integrations by parts and expansions
in m./m, and p,/L) yield simplified expressions which are still applicable to any colli-

sionality regime and do not require the distribution functions to be close to Maxwellians.

These simplified expressions are well suited for Chapman-Enskog, neoclassical or other

kinds of approximations.



For each species, define the thermal speed vy, = /p./(m.n), the dimensionless phase
space coordinate
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and the dimensionless distribution function
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Define also the collision frequencies:
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Expanding the distribution functions in powers of 6 ~ p,/L (and dropping the x,t¢

arguments) we have:
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It is also useful to define the following two-point convolutions:
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COLLISIONAL FRICTION FORCE

oll coll pe SH 5 SSHb af (f fH)
peoll Mvthe -/ d3£ V(&) ¢ ( ) T | b
£ — 5 b @f (f &) 52 m 1/2 )
o € G HGe S = e & it + o )+ o)

In the generalized Ohm’s law, F®" is to be compared with Vp, ~ p./L. The order of

magnitude of the different terms that contribute to F</ is
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ION COLLISIONAL PERPENDICULAR VISCOSITY

In its leading order:
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In the momentum conservation equation, P, is to be compared with Isbgyr ~ 0p, in the

L

fast dynamics (MHD) ordering, or Isfyr ~ §?p, in the slow dynamics (drift) ordering.



ION COLLISIONAL HEAT EXCHANGES

In their leading order:

coll O
g = T oy g S g & ONEA) g2 e g -

8tm, &

b (9 [ (&
p, [ &€ L f” o ff” [d*¢ (¢2 =3¢t £, ¢)] ~ ugo”f;@e—p» ~ pel! (Z’;)”Q (pe — p.)

L L

and

coll

ch]oBll _ Y /d3€ (5

8 €“> (57 5\) LCO” (pLH _pu) )

3

with ¢ = O(V“”pﬁ) + O(Vcoup”/me / mL) + O(V“”pe\/m6 / mL) for isotropic ffm = ffo) (&) .
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In the ion pressure equations, ¢* is to be compared with 9dp,/0t and ¢°¥' is to be

compared with J0(p, —p,.)/0t .



ELECTRON COLLISIONAL HEAT EXCHANGES
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In its leading order:
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In the electron pressure equations, ¢/ is to be compared with dp,/0t and ¢°% is to be

compared with J(p. — p..)/0t .



LOOKING AHEAD

To proceed to the next step in the analysis, a decission has to be made on the relative

orderings among several independent small parameters in the theory.

The three independent parameters that should be considered small but finite are:
o~ p/L, VfO”/QCL and me/m,

and the relative orderings among them are crucial to determine the appropriate colli-

sional terms to be included in the model.

In addition, the decission has to be made on the orderings of w/(}, and u,/vy, relative

to ¢ (fast or slow dynamics).

It would be desirable to agree on a set of ”canonical orderings for low-collisionality

extended-MHD”, presumably based on the CEMM time scales of interest in ITER.



