Status of Pellet Injection and ELM Simulations

Ravi Samtaney

Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton University

CEMM Meeting - Post APS/Sherwood Conference April 25 2006, Dallas TX

Acknowledgement: DOE SciDAC Program

Collaborators

- P. Colella and Applied Numerical Algorithms Group (LBNL)
- S. C. Jardin (PPPL)
- P. Parks (GA)
- D. Reynolds (UCSD), C. S. Woodward (LLNL)
- Jointly funded CEMM and APDEC SciDAC project. Supported by US DOE Contract No. DE-AC020-76-CH03073

Outline

- Introduction and motivation
- Current Status
 - AMR code
 - JFNK Approach for fully implicit time advance
- Future directions and conclusion

Pellet Injection & Edge Localized Modes

Motivation

- Injection of frozen hydrogen pellets is a viable method of fueling a tokamak
- Presently there is no satisfactory simulation or comprehensive predictive model for pellet injection (esp. for ITER)
- H-mode operation of ITER will be accompanied by edge localized modes (ELMS) (ITER Physics Experts Group,Nucl. Fusion 1999)
- Pellet injection related to ELMS (Gohill et al. PRL, 2001; Lang et al. Nucl. Fusion 2000)
- Objectives
 - Develop a comprehensive simulation capability for pellet injection and ELMs in tokamaks (esp. ITER) with modern technologies such as adaptive mesh refinement for spatial resolution and fully implicit Newton-Krylov approach for temporal stiffness

Scales and Resolution Requirements

- Time Scales $\tau_e < \tau_f < \tau_a < \tau_c < \tau_p$
- Spatial scales: Pellet radius $r_p \ll Device size L \sim O(10^{-3})$
- Presence of magnetic reconnection further complicates things
 - Thickness of resistive layer scales with ~ $\eta^{1/2}$
 - Time scale for reconnection is ~ $\eta^{-1/2}$
- Pellet cloud density ~ $O(10^4)$ times ambient plasma density
- Electron heat flux is non-local
- Large pressure and density gradients in the vicinity of cloud
- Pellet lifetime ~ $O(10^{-3})$ s \rightarrow long time integrations

Resolution estimates

Tokamak	Major Radius	Ν	N _{steps}	Spacetime Points
CDXU (Small)	0.3	2 x 10 ⁷	2 x 10 ⁵	4 x 10 ¹²
DIIID (Medium)	1.75	3.3 x 10 ⁹	7 x 10 ⁶	2.3 x 10 ¹⁷
ITER (Large)	6.2	1.5 x 10 ¹¹	9 x 10 ⁷	1.4 x 10 ¹⁹

Pellet Injection: Current Work

 Combine global MHD simulations in a tokamak geometry with detailed local physics including ablation, ionization and electron heating in the neighborhood of the pellet

- AMR techniques to mitigate the complexity of the multiple spatial scales in the problem
- Newton-Krylov approach for wide range of temporal scales.

Numerical Methods

- Finite volume approach
- Adaptive mesh refinement method
 - explicit second order time stepping
 - spatial stiffness
 - Chombo package (developed at LBNL)
- Jacobian-Free Newton Krylov (JFNK) Method
 - temporal stiffness
 - Sundials package (developed at LLNL)
- The hyperbolic fluxes are evaluated using upwinding methods
 - seven-wave Riemann solver
 - Harten-Lee-vanLeer (HLL) method
- Diffusive fluxes computed using standard second order central differences

Pellet Injection: AMR

- Meshes clustered around pellet
- Computational space mesh structure shown on right
- Mesh stats
 - 32³ base mesh with 5 levels, and refinement factor 2
 - Effective resolution: 1024³
 - Total number of finite volume cells:113408
 - Finest mesh covers 0.015 % of the total volume
 - Time adaptivity: 1 $(\Delta t)_{base}$ =32 $(\Delta t)_{finest}$

Pellet Injection: Pellet in Finest Mesh

Results - HFS vs. LFS

 $B_{T} = 0.375T$ $n_0 = 1.5 \times 10^{19} / m^3$ $T_{e\infty}$ =1.3Kev β=0.05 R₀=1m, a=0.3 m Pellet: $r_p=1mm$, $v_p=1000m/s$

HFS vs. LFS - Average Density Profiles

HFS Pellet injection shows better core fueling than LFS

Arrows indicate average pellet location

JFNK Fully Implicit Approach for Resistive MHD

- Time step set using explicit CFL condition of fastest wave: $\Delta t_{cfl} \leq \frac{\Delta x}{||v+c_f||_1}$
- Pellet Injection: pellet radius $r_p = 0.3$ mm, injection velocity $v_p = 450$ m/s, fast magneto-acoustic speed $c_f \approx 10^6$ m/s:
 - To resolve pellet <u>need O(10^T) time steps</u>
- Longer time steps (implicit methods) are a practical necessity
- Fixed time step, two-level θ-scheme using a Jacobian-Free Newton-Krylov nonlinear solver [KINSOL]:

 $f(U^n) = U^n - U^{n-1} - \Delta t \left[\theta g(U^n) + (1 - \theta) g(U^{n-1}) \right], \quad g(U) = \nabla \cdot \left(F^p(U) - F^h(U) \right)$

- $\theta = 1 \Rightarrow$ Backward Euler [$O(\Delta t)$]; $\theta = 0.5 \Rightarrow$ Cranck-Nicholson [$O(\Delta t^2)$]
- Adaptive time step, adaptive order, BDF method for an up to 5th order accurate implicit scheme [CVODE]:

$$f(\mathbf{U}^{n}) = \mathbf{U}^{n} - \sum_{i=1:q} \alpha_{n,i} \mathbf{U}^{n-i} - \Delta \mathbf{t}_{n} \beta_{n,1} g(\mathbf{U}^{n-1}) - \Delta \mathbf{t}_{n} \beta_{0} g(\mathbf{U}^{n})$$

Time step size and order adaptively chosen based on heuristics balancing accuracy, nonlinear & linear convergence, stability

Pellet Injection - Implicit Simulations

Implicit simulations in a toroidal geometry. $\Delta t = 100 \Delta t_{explicit}$

Current Status: ELM Simulations

- Developed a JFNK implicit code to simulate ELMs in (R,φ, Z) coordinates
 - Vacuum modeled as a high resistive cold plasma
 - Preconditioners
 - Local wave speed decomposition with directional splitting for hyperbolic terms
 - Multigrid for diffusion terms
- Explicit time stepping AMR MHD code
 - Needs implicit treatment of diffusion terms
- Upwind method useful to treat large gradients at plasma "edge"
- No real results yet :-(
 PPPL

Pellet Injection and ELMs

- Experimentally it is known that pellet injection can induce ELMs in H-mode
- In preliminary simulations, we observe perturbation of outer flux surfaces caused by pellet injection

Pellet Injection - Flux Surface Perturbations

AMR Mesh structure Effective resolution 1024³

Summary and Future Plan

- Pellet injection simulations with an AMR MHD code utilizing flux tube geometry
 - AMR is necessary to resolve detailed local physics
- Preliminary simulations using a fully implicit Newton Krylov approach presented
- Future plan
 - Refinement of the models ("atomic physics"- ionization, dissociation) for pellet injection; include anisotropic heat conduction
 - Implement pre-conditioning techniques in fully implicit JFNK code
 - ELM simulations and pellet induced ELMs
 - Couple with TSC for initial conditions (Jardin)
 - Semi-implicit AMR simulations and fully implicit JFNK simulations
 - <u>Proposed work under SciDAC-2</u>: Combine adaptive and fully implicit methods to manage the wide range of spatial and temporal scales

