CDX-U: New Equilibrium & M3D Results;

DIII-D Error Field Calculations

Josh Breslau

CEMM Meeting Boulder, CO March 30, 2008

Previous Nonlinear M3D-NIMROD Comparison

Good agreement with each other; period **not** in agreement with experiment.

Reasons for Proposing a New Benchmark

- M3D and NIMROD results from 1st benchmark agree with each other but not with experiment. Better fidelity to experiment should yield better validation.
 - Replace current source with loop voltage.
 - Replace pressure source with ohmic heating.
 - Use a much more realistic profile for κ_{\perp} .
 - Allow resistivity to track evolving temperature profile.
 - Use constant Prandtl number.
- Beginning with an analytically specified equilibrium will make it possible to publish the benchmark as a standard test problem available to other nonlinear MHD codes.

Specification of Analytic Equilibrium

Quantity	Value
Major radius R ₀	0.341 m
Minor radius <i>a</i>	0.247 m (aspect ratio = 1.38)
Ellipticity κ	1.35
Triangularity δ	0.25
Central temperature $(T_e = T_i)$	100 eV
Normalized central pressure $\mu_0 p_0$	7.5×10^{-4} (implies $n_0 = 1.86 \times 10^{19} \text{ m}^{-3}$)
α Parameter in pressure equation*	0.1
Vacuum value g_0 of $R \cdot B_T$	0.04252 T⋅m
Effective ion charge Z _{EFF}	2.0
Loop voltage V _L	3.1741 V (implies $q_0 \approx 0.82$)

*
$$p(\psi) = p_0 \left[\alpha \tilde{\psi} + (1 - \alpha) \tilde{\psi}^2 \right]$$
, where $\tilde{\psi} = \frac{\psi - \psi_{\text{limiter}}}{\psi_{\text{axis}} - \psi_{\text{limiter}}}$.

Use equilibrium code to solve Grad-Shafranov equation, with profile of heat conduction coefficient χ computed self-consistently to keep temperature constant given profile, energy supplied by applied $V_{\rm L}$.

Form of New Equilibrium

 $R(\theta) = R_0 + a\cos\left[\theta + \delta\sin\left(\theta\right)\right]$ $z(\theta) = a\kappa \sin(\theta)$

 $T(\psi) = T_0 \tilde{\psi},$

$$n(\psi) = \frac{p}{2k_BT} = \frac{p_0}{2k_BT_0} \left[\alpha + (1 - \alpha)\tilde{\psi} \right]$$

Old case: pkkk = 9.09×10^{-4}

Transport Coefficients

- Evolving Spitzer resistivity $\eta(\mathbf{x}, t) \propto T^{-3/2}$ with cutoff 100x initial central value; initial central $S = 1.94 \times 10^4$.
- Constant Prandtl number 10 (evolving axisymmetric viscosity).
- Perpendicular heat diffusivity κ_{\perp} read from self-consistent steady state computed with equilibrium code; central value renormalized to about 2.03 m²/s to maintain steady-state.
- Parallel heat conduction as in previous case ($v_{Te} = 6 v_A$).

Conservation properties

n=1 eigenmode

1,1 mode; $\gamma\tau_{A}\approx$ (1.415 \pm 0.0005) \times 10^{-2}

Higher n eigenmodes

2,2 mode; $\gamma\tau_{A}\approx$ (3.90 \pm 0.05) \times 10^{-4}

n=2

n=3

3,3 mode; stable

Nonlinear results

24 planes, 81 radial zones, sym 5 on 144 Franklin cores

Nonlinear Conservation

Nonlinear Mode History (KE)

Poincaré Plots

Simulated Temperature Diagnostic

Simulated signal is simply $\int p^2 d\ell$ along a chord through the plasma. Rotation frequency: two planes every 0.625 $\tau_A \rightarrow$ period = 7.5 τ_A .

Soft X-ray Signals (Integrated p²)

Nonlinear Mode History (KE)

Total Magnetic Energy History

Steady Drop in Toroidal Field

Total magnetic Energy with Constant si on boundary

Total kinetic energy with constant si on boundary

DIII-D Error Field

Initial study

- Begin with a DIII-D equilibrium.
- Add an *m*=2, *n*=1 perturbation of specified amplitude to initial poloidal flux on plasma boundary.
- Measure plasma displacements, singular currents with linear code; infer island widths.
- Evolve M3D nonlinearly until saturation of *n*=1 islands; compare widths to linear result.

DIII-D Equilibrium

Initial Perturbation

• Add helical perturbation to poloidal flux function ψ on boundary of the form

$$\tilde{\psi}_{boundary}(\theta,\varphi) = \tilde{\psi}_0 \cos(\varphi - 2\theta)$$

where φ is the toroidal angle, θ is the geometric poloidal angle defined by

$$\tan\left(\theta\right) = \frac{z}{R - R_0}$$

(normalized major radius $R_0=2.89$), and the equilibrium flux is $\psi = 0$ on the boundary and $\psi = -0.506$ on the magnetic axis.

• To generate measurable 2,1 islands while avoiding stochasticity, choose

$$\tilde{\psi}_0 \le 2.7 \times 10^{-3} \qquad \left(\frac{\tilde{\psi}_0}{|\psi_0|} \le 5.33 \times 10^{-3}\right)$$

• Do not perturb initial boundary current density.

Initial State

• Begin by solving the Poisson equation

 $\frac{\partial^2 \psi}{\partial R^2} - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial z^2} = -RJ_{\phi}$

for ψ subject to the perturbed boundary condition, where J_{ϕ} is the unperturbed equilibrium toroidal current density.

- Because the initial current remains unperturbed, the resulting state represents the superposition of the equilibrium field (including external and plasma currents) and the error field, without the plasma reponse.
- Time-evolving from this state with various choices of resistivity η will show the effect of the plasma response on the islands.

Resolving the Islands

Poloidal mesh has 128 radial, 512 θ zones; packed ×2 around q=2 surface.

 \mathbb{N}

Measuring Island Widths

Widths now agree well with IPEC

Conclusions

• Island widths agree for sufficiently small perturbations; larger ones show nonlinear effects.

• Additional future work to include further scaling studies, and investigate effects of plasma rotation.