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M3D Kinetic energy in first 
10 modes

Previous Nonlinear M3D-NIMROD 
Comparison
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NIMROD Kinetic energy in 
first 10 modes

Good agreement with each other; period not in agreement with experiment.



Reasons for Proposing a New 
Benchmark

• M3D and NIMROD results from 1st benchmark agree 
with each other but not with experiment.  Better fidelity to 
experiment should yield better validation.
– Replace current source with loop voltage.
– Replace pressure source with ohmic heating.
– Use a much more realistic profile for κ⊥

 

.
– Allow resistivity to track evolving temperature profile.
– Use constant Prandtl number.

• Beginning with an analytically specified equilibrium will 
make it possible to publish the benchmark as a standard 
test problem available to other nonlinear MHD codes.



Specification of Analytic Equilibrium
Quantity Value

Major radius R0 0.341 m

Minor radius a 0.247 m  (aspect ratio = 1.38)

Ellipticity κ 1.35

Triangularity δ 0.25

Central temperature (Te =Ti ) 100 eV

Normalized central pressure μ0 p0 7.5 ×

 

10-4 (implies n0 = 1.86 ×

 

1019 m-3)

α

 

Parameter in pressure equation* 0.1

Vacuum value g0 of R·BT 0.04252 T·m

Effective ion charge ZEFF 2.0

Loop voltage VL 3.1741 V  (implies q0 ≈

 

0.82)

( ) ( ) 2 limiter
0

axis limiter
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ψ ψ
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Use equilibrium code to solve Grad-Shafranov equation, with profile of heat 
conduction coefficient χ computed self-consistently to keep temperature constant 
given profile, energy supplied by applied VL .



Form of New Equilibrium

qmin = 0.8023 Minimum value: 9.21 ×

 

10-6
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Transport Coefficients
• Evolving Spitzer resistivity η(x,t)∝T-3/2  with cutoff 100x 
initial central value; initial central S = 1.94×104.

• Constant Prandtl number 10 (evolving axisymmetric 
viscosity).

• Perpendicular heat diffusivity κ⊥
 

read from self-consistent 
steady state computed with equilibrium code; central 
value renormalized to about 2.03 m2/s to maintain 
steady-state.

• Parallel heat conduction as in previous case (vTe = 6 vA ).



Conservation properties

Renorm. factor=1.0



n=1 eigenmode
Velocity stream function U C = -RJφ Temperature

1,1 mode;  γτA ≈
 

(1.415 ±
 

0.0005) ×
 

10-2



Higher n eigenmodes

2,2 mode;  γτA ≈

 

(3.90 ±

 

0.05) ×

 

10-4

C = -RJφVelocity stream function U Temperature

n=2

3,3 mode;  stable

n=3



Nonlinear results
24 planes, 81 radial zones, sym 5 on 144 Franklin cores
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1st peak = 2.64e-5
at t =1252.19 2nd peak = 2.50e-5

at t =2615.70

1st Sawtooth period = 1363.5 τA ≈

 

453 μs;
2nd sawtooth period = 769.0 τA ≈

 

255 μs;
3rd sawtooth period = 622.4 τA ≈

 

206 μs;
reference experimental period ≈

 

500 μs.

Approximately 51,250 CPU hrs used
(333,000 CPU hrs charged)

for 673,100 time steps.

3rd peak = 1.80e-5
at t =3384.73

4th peak = 1.51e-5
at t =4007.08

Switched to
symmetric version
(30% speedup)



Nonlinear Conservation



Nonlinear Mode History (KE)



Poincaré Plots

t = 987.80; qmin = 0.8022 t = 1109.55; qmin = 0.7965 t = 1207.05; qmin = 0.7955 t = 1244.55

t = 1252.05; qmin = 1.0329 t = 1357.05; qmin = 0.9953 t = 1452.05; qmin = 0.9518 t = 1531.43; qmin = 0.9211



Simulated Temperature Diagnostic

Simulated signal is simply          along a chord through the plasma.
Rotation frequency: two planes every 0.625 τA → period = 7.5 τA .

2p d∫

Chords for soft X-ray diagnostic



Soft X-ray Signals (Integrated p2)



Nonlinear Mode History (KE)
γτA =1.474e-2

t=1580.8
Δ=328.61
qmin = 0.9054
total KE = 1.549e-8
(052jd3) t=1977.675

Δ=725.485
qmin = 0.8423
total KE = 1.528e-8
(052lx8)

γτA =1.188e-2

t=2944.55
Δ=328.85
qmin = 0.9019
total KE = 2.105e-8
(052qy1)

γτA =7.63e-3
γτA =9.15e-3



Total Magnetic Energy History

ΔM.E. = -0.210853
(-13.9 %)

5408 data points

Total thermal energy is well 
conserved, while total kinetic energy 
is negligible in comparison.  
Therefore this energy must be 
leaving the system entirely.
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Steady Drop in Toroidal Field

41.152 10d
dt

−Φ
= − ×

mag 56.298 10
dE

dt
−= − ×

Drops by 11.8%.

Drops by 6.1%.

( ) 5sI
3.068 10

d
dt

−= − ×



Total magnetic Energy with 
Constant si on boundary

Restart from t = 3385.8



Total kinetic energy with constant 
si on boundary
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Restart from t = 3385.8



Constant si, by mode number



DIII-D Error Field



Initial study
• Begin with a DIII-D equilibrium.

• Add an m=2, n=1 perturbation of specified amplitude to initial 
poloidal flux on plasma boundary.

• Measure plasma displacements, singular currents with linear 
code; infer island widths.

• Evolve M3D nonlinearly until saturation of n=1 islands; 
compare widths to linear result.



DIII-D Equilibrium

ψ

q

qmin = 1.067



Initial Perturbation
• Add helical perturbation to poloidal flux function ψ on boundary of the form

( ) ( )0, cos 2boundaryψ θ ϕ ψ ϕ θ= −

where ϕ is the toroidal angle, θ is the geometric poloidal angle defined by

( )
0

tan z
R R

θ =
−

(normalized major radius R0 =2.89), and the equilibrium flux is ψ = 0 on the boundary 
and ψ = -0.506 on the magnetic axis.

• To generate measurable 2,1 islands while avoiding stochasticity, choose

3 30
0

0

2.7 10       5.33 10ψψ
ψ

− −⎛ ⎞
≤ × ≤ ×⎜ ⎟⎜ ⎟

⎝ ⎠

• Do not perturb initial boundary current density.



Initial State
• Begin by solving the Poisson equation

2 2

2 2

1 RJ
R R R z φ
ψ ψ ψ∂ ∂ ∂

− + = −
∂ ∂ ∂

Instantaneous Perturbed Flux

R

for ψ subject to the perturbed boundary condition,
where Jφ

 

is the unperturbed equilibrium toroidal
current density.

• Because the initial current remains unperturbed, 
the resulting state represents the superposition 
of the equilibrium field (including external and 
plasma currents) and the error field, without the 
plasma reponse.

• Time-evolving from this state with various 
choices of resistivity η will show the effect of 
the plasma response on the islands.



Resolving the Islands
Poloidal mesh has 128 radial, 512 θ zones; packed ×2 around q=2 surface.

2,1 island spans ~20 zones → resolved.



Measuring Island Widths

s

θ

2,1

3,1

Plot width
= 0.099

η=10-1, t=12.0, φ=0

Estimated width (small island formula):

2 0.0707mnBw
mι

Δ = ≈
′



Widths now agree well with IPEC

IPEC

M3D

10 G, locking



Conclusions

• Island widths agree for sufficiently small 
perturbations; larger ones show nonlinear 
effects.

• Additional future work to include further 
scaling studies, and investigate effects of 
plasma rotation.
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