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Mixed finite element method for parallel heat 
conduction in NIMROD.

● NIMROD successfully uses higher-order elements to 
capture effects of anisotropic heat conduction.  

● However, spatial convergence for confinement 
calculations with stochastic fields requires many 
Fourier modes (> 11) and high polynomial order (> 4).

● Such resolution is prohibitive when computing integral 
heat flow closure.  Also, anisotropic conduction is 
needed for semi-implicit stabilization.

● Goal: accurately capture effects of anisotropic heat 
conduction with fewer Fourier modes and lower 
polynomial degree.



   

 Consider temperature evolution due to 
anisotropic conduction only.

● Simplified temperature equation is: 

● NIMROD expands T using C0  finite-element basis 
functions, which are appropriate when solving weak 
form of problem.
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Mixed finite-element method (MFEM) treats q
||
 

as fundamental variable.
● Define parallel conduction type term in T evolution:

● Expand q
||
= Σ

i 
q

||i
α

i
 (like T) and solve expanded 

system for T and q
|| 
simultaneously.  

● Leads to non-Hermitian matrices which require non-
symmetric solvers.
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Integrate conduction terms in T equation by 
parts but leave q

|| 
equation in strong form.

● Ignoring surface terms yields coupled system:

● Note q
||
 is undifferentiated
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3
2

n ∂T
∂ t

 ∇ j⋅⊥

∇ T −n00
1/4 q

∥

b]=0,

∫ dV  j [{
n0

2

0
1 /2

〈
∥
−

⊥
〉

q
∥
n00

1/4 b⋅∇ T }]=0,



   

Apply to JCP anisotropic conduction test 
problem.

● Magnetic field and grid not aligned.
● Accuracy tested with problem that has flux-function 

heat source in rectangular geometry.



   

Error reduced considerably with MFEM 
method (bottom curve on right plot).

previous result MFEM result (bottom curve)

CPU time 1046s

CPU time 15s



   

Apply MFEM to cylindrical tearing mode case 
as additional test.

● Coupled 2/1 and 3/2 islands interact leading to stochasticity 
(Holmes, et al. 1983 Phys Fluids).

Poincare plot from Holmes' case prior to “ disruption”
2/1 and 3/2 islands widths versus time



   

Compare parallel conduction models on this 
case as part of CEMM work.

● Freeze B at different time slices, heat with symmetric source 
Q~exp(-r2) and evolve T only to steady-state. 

juxtaposition of NIMROD linear eigenfunctionsheat source contours, Q~exp(-r2)



   

Future work on MFEM applied to anisotropic 
heat conduction.

● Develop effective preconditioning in Fourier direction.
- compute diagonal in finite-element basis index 
matrices and apply in preconditioning step.

● Revisit SSPX heat confinement calculations using 
MFEM approach.

● Employ MFEM anisotropic, semi-implicit conduction 
operator for stabilizing integral heat flow closure in 
SSPX heat confinement studies.



   

Continuum solution to Chapman-Enskog-like 
drift kinetic equation in NIMROD.

● For initial q
||
 calculation, solve equations of form:

● Solve equations on separate groups of processors.
● Use v grid that makes Gauss-Laguerre quadrature 

exact.
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Stagger F and T. 

● First solve for F (actually f
i 
= f
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) using T

 
k+1/2:

● Then solve for T
 
= T

 
k+3/2 -  T

 
k+1/2

 
 using centered f

 
k+1:

[1 t 
L

2
iv b⋅∇  ] f i= t 

L

2
i v b⋅

∇  f i
k

 t W i1
−1 L1

3 /2 v  b⋅∇ ln T k1 /2
 f Max

k1 /2

[1 t ∇⋅
⊥

∇ ]T= t ∇⋅
⊥

∇T k1 /2

− t ∇⋅q
∥

k1 ,

where q
∥

k1
=−T∫d v v

∥
L1

3 /2 P1∑i
W 1i f i

k1 ,



   

Acceleration term brings in differentiation with 
respect to speed, v. 

● Can include nonlinear parallel electric acceleration:

at the expense of coupling solutions on v grid.
● At present, can compute full matrix that arises from spatial 

coupling and solve for f
i
(v

j
,x,t) using SuperLU.

● Either develop 3-D preconditioning for non-symmetric systems 
or combine equations for f

i 
's

 
to make system symmetric.
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Future work.

● Apply 3-D iterative solves in continuum solution of 
CEL-DKE and/or higher order moment equations.


