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Motivation

•

 

The impulse heat flux associated with large ELMs becomes 
unacceptably high for ITER

•

 

The application of resonant magnetic perturbations (RMP) to DIII-D 
plasmas at low collisionality has achieved ELM suppression, 
primarily due to a pedestal density reduction 

•

 

The mechanism for the enhanced particle transport (without 
significantly enhanced heat transport) is unclear

•

 

Stochastic transport theory applied to vacuum field calculations

 

has 
not explained experimental observations

•

 

NIMROD simulations allow both the calculation of the plasma 
response to the RMP fields, and the inclusion of additional transport 
due to macroscopic MHD motion

→

 

Clearly, other transport mechanisms associated with small scale 
turbulence are possible, but neglected in these simulations 



Initial Conditions(1)

NIMROD gridDIII-D shot 113317

Grid: 20x120, w/ 5th

 

order polynomials

Toroidal components n=0-5



Initial Conditions(2)

•

 

Applied fields associated with 
DIII-D I-coils, C-Coils, and 
intrinsic error fields. (C-Coil 
fields are for error correction)

•

 

Total perturbing field includes 
n=1,2,3 components, with n=3 
being the largest



Initial Conditions(3)

•

 

Three rotation profiles 
simulated include no rotation, 
and two profiles shown at left 
with identical core values (110 
km/s)  but lower edge rotation 
in one case

•

 

Rotation frequency is 
compared with reconnection 
frequency for n=1,3 modes at 
simulated parameters

•

 

Simulation has resistivity 
enhanced 100 times above 
Spitzer value

•

 

Simulation is in the visco-

 
resistive regime



Less stochasticity with higher rotation

Low edge rotation
Plasma response 

(no rotation) High edge rotation



Plasma response amplifies resonant 
components of the field

Normal component of the n=3 B-fields (T)

x10-4 x10-4

x10-4 x10-5

Vacuum I-coil fields Low edge rotation

Plasma response (no rotation) High edge rotation

White line on each plot is the resonant line m=-3q



Without rotation, resonant components 
amplified by a factor of 2-5

•Amplitude and phase for each m are 
integrated over all Ψ

•Ratio of mode amplitude to vacuum I-coil 
mode amplitude

•All n=3 modes with m≤-4 are amplified for no 
rotation

•Amplification drops below unity for -6 ≤

 

m≤-4 
with high edge rotation 

•Nearly constant phase shift of π/5 for low 
edge rotation

•

 

High rotation phase shift is not constant vs. 
m or in time



Rotation affects evolution of n=1, n=3 
kinetic energy

Kinetic Energy (J)

Time (ms)

Magnetic Energy (J)

Time (ms)

•

 

(Left) n=3 energy on expanded scale for 
high rotation exhibits ~10kHz oscillation, 
equal to 3 times plasma rotation frequency 
at the edge 

• Two energies oscillate 120°

 

out of phase

•

 

n=3 flows are 
suppressed at 
high edge 
rotation

•

 

5.8kHz  n=1 
oscillation at low 
rotation, 
comparable to 
difference in q=1, 
q=2 rotation



Fitzpatrick* error field theory
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Boundary layer response to the 
applied error fields at the mode 
rational surface

Without rotation, error fields are amplified 
in tearing stable plasmas with -Δ′<2m
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Screening factors calculated for 
the low and high rotation 
simulations assuming -Δ′=2m 
(no amplification)

*Fitzpatrick, Phys. Plasmas 5 (1998) 3325. 



E×B convection across the separatrix 
reduces edge density

Poloidal Velocity Density (no rotation) Density (high rotation)



High edge rotation reduces E×B Motion, 
eliminates enhanced transport

Normal velocity along separatrix
Final Density Profiles
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Temperature evolves similarly at high, 
no rotation

•

 

Heat transport at the edge is 
enhanced in all cases, unlike 
DIII-D experiments

•

 

Low rotation temperature 
profile differs from the other two, 
primarily due to smaller 1/1 
mode in core (interaction 
between 1/1 and 2/1 mode)

•

 

Overlay of high rotation and no 
rotation temperature profiles 
suggests particle transport and 
heat transport are not closely 
related

Temperature Profiles @ 0.6 ms



Transition from un-reconnected to 
reconnected state

Simulations begins at final state of 
high rotation case, but with the 
rotation turned off

n=3 KE associated with E×B 
convection immediately grows

Magnetic fields again become 
stochastic throughout much 
of the volume

Density transport ensues as in 
previous non-rotating case



Heat and particle flux near the x-point

Simulation boundary

Surface for heat and 
particle flux plots
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Locations 
corresponding to y-axis 
in plots on next 2 slides

(arbitrary units)



Heat flux near divertor is reduced by 
rotation

•

 

Splitting of outer strike-point and 
n=3 structure is evident

•

 

In both rotating cases, the peak 
heat flux is reduced by a factor of 2, 
as is the integrated heat flux over 
this region

How to reconcile with T profile 
similarities?

inboard

outboard

x-point



Rotation reduces  n=3 variation of 
particle flux

•

 

Strong n=3 variation in particle flux 
on outboard strike-point with no 
rotation

•

 

n=3 variation is lessened with 
rotation, but amplitude increases on 
the inboard strike-point

•

 

Positive is outward flux, negative is 
inward

inboard

outboard

x-point



Conclusions

•
 

Applied RMP fields in DIII-D NIMROD simulations are 
amplified by the ideal plasma response

•
 

Rotational screening reduces resonant field amplitude, in 
some cases below the vacuum level

•
 

Applied n=3 fields produce E×B convection cells at the 
separatrix which enhance particle transport

•
 

Sufficiently high rotation eliminates the enhanced particle 
transport

•
 

Present NIMROD heat transport model gives pedestal 
temperature gradient reduction, in contrast with 
experiments



Future Work

•
 

Scaling of rotation screening with plasma 
resistivity is most important factor to determine if 
E×B mechanism is operative in real DIII-D 
plasmas

•
 

Simulation of particular DIII-D RMP discharges 
with real rotation profiles, to make direct 
comparisons with data

•
 

Modify the heat transport model to determine 
what model will reproduce the temperature 
pedestal gradient increase
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In the non-linear “Rutherford”

 

regime, 
Fitzpatrick* has the island width evolution 
equation: 

Which he solves with the 
assumption W=0 when t=0 to get:

3/1
0 tsinW)t(W ω=

W0

Fitzpatrick’s solution has a frequency of 
2ω

 

(=2nΩ), whereas our n=3 oscillation 
has a frequency of ω. 

But suppose we assume W=Wv

 

when 
t=0. Then we get: 

W= (Wv
3+W0

3(sin ωt))1/3

Provided Wv

 

>W0

 

(it is in our case for all 
Wv

 

>~10-6m), we get φ=ωt (no weird 
phase jumps) and:

Wv

*Fitzpatrick, Phys. Plasmas 5 (1998) 3325. 

The Rutherford Regime
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