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Outline

● Edge Physics in Tokamaks
● Center for Plasma Edge Simulations (CPES) 

Framework 
– Kinetic XGC0 code

– Ideal MHD stability ELITE code

– Extended MHD NIMROD code

● Simulation results of ELM crash for DIII-D discharge
● Discussion
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Edge Physics in Tokamaks
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● Requires time dependent,
integrated understanding of 

– Edge kinetic neoclassical physics
– Edge kinetic turbulence physics
– Core turbulence 
– MHD physics 

● Large scale edge localized modes 
(ELMs)

– Neutral, impurity and atomic physics
– Scrape-off-layer physics
– Wall load, neutral recycling, and sputtering
– Energetic particle influx from core
– RF interaction of edge plasma
– 3D magnetic field effects
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Kinetic Code for Tokamak Edge Simulation

● Challenges for Edge Kinetic Modeling
– Special treatment for open field lines and 

divertor geometry is required
– Steep gradient and X-transport generate strong neoclassical 

E-field and highly non-maxwellian distribution functions
– Neutral collision and ionization plays an important role 

in the H-mode pedestal build up
● XGC : X-point included Gyrokinetic Code

– Full-f  particle code for ions and electrons 
including neutral collisions

– XGC0 : Guiding Center code. Average-out turbulent E-field
– XGC1 : Electro-static gyrokinetic code



Joint CPES/CEMM meeting, Boulder, 
CO

Kinetic XGC0 code
● Follows 5D guiding center dynamics
● Is much faster than most kinetic codes 

– 1D solution for electric field: 
axisymmetric component of E

r

● Ion/electron/neutral, full-f 
● Conserves collisions
● Evaluates kinetic bootstrap current, and 

the corresponding Grad-Shafranov 
equilibrium

CPES Computational Framework

Coupled XGC0-ELITE-NIMROD 
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Kinetic XGC0 code
● Follows 5D guiding center dynamics
● Is much faster than most kinetic codes 

– 1D solution for electric field: 
axisymmetric component of E

r

● Ion/electron/neutral, full-f 
● Conserves collisions
● Evaluates kinetic bootstrap current, and the 

corresponding Grad-Shafranov equilibrium
Coupled with other codes (ELITE, M3D, 
NIMROD) through the Kepler integration 
framework

CPES Computational Framework
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XGC0 Modeling of H­mode Pedestal Buildup

Formation of shear radial electric 
field and ExB flow shear in 
the H-mode pedestal region is 
qualitatively consistent with 
experimental observations in terms 
of direction and localization

Parallel and poloidal flows as 
functions of minor radius 
demonstrate the redistribution of 
fluxes near the separatrix
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Parallel flow vs ρ Poloidal flow vs ρ

Radial electric field vs ρ
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Stability Analysis with ELITE Code
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● ELITE code (developed by 
P. Snyder and H. Wilson):
– Computes intermediate to high n (> 5) 

ideal MHD instabilities 
– Uses extension of the ballooning formalism 

through two orders in 1/n
– Determined peeling-ballooning stability boundaries
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Toroidal ion transit time ( t / τ )

Growth rate γ

γ after ω∗ stabilization

Stability Analysis with ELITE Code
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Plasma pressure as function of
normalized poloidal flux at 

different times as 
computed by 

XGC0 code

ELITE results
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Modeling of ELM Crash with NIMROD Code
The CEMM NIMROD code for 

extended nonlinear MHD uses

• High-order finite element 
representation of the poloidal plane:

• Accuracy for MHD and transport 
anisotropy at realistic 
parameters: S>106, χ||/χperp>109

• Flexible spatial representation

• Temporal advance with semi-implicit 
and implicit methods

• Multiple time-scale physics is 
described from ideal MHD (μs) 
to transport (ms) time scales
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Modeling of ELM Crash with NIMROD Code

• The NIMROD code numerically advances the resistive MHD 

equations in 3D geometry
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Modeling of ELM Crash with NIMROD Code
• In addition to previously added non-ideal effects, NIMROD 

allows two-fluid treatment 

• Hall and diamagnetic terms in Ohm’s law

• More complete stress tensor in momentum equation
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NIMROD Simulation for DIII­D Discharge 96333

● NIMROD generates grid that is packed 
near the separatrix

– Typical resolution used in this 
simulations is 40x160 with 
polynomial degree of 4

● 22 toroidal modes
are considered

Plasma pressure

Safety factor
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NIMROD Simulation for DIII­D Discharge 96333
● Nonlinear coupling between different toroidal modes in NIMROD 

simulations without two fluid effect leads to strong peaking of high 
toroidal modes numbers

– As result, simulations without two fluid effects are not resolved toroidally

● Two-fluids effects are important in this simulations

– Effect of diamagnetic stabilization 

Growth rates in NIMROD
simulation w/o two-fluid effects

Growth rates in NIMROD
simulation with two-fluid effects

*e , i=
c

qe , i nB2 k  B×∇ pe , i

γτ
A

γτ
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Modeling of ELM Crash with NIMROD Code
Simulation of temperature contour plots during 
an ELM crash in DIII-D discharge 96333

Initial (linear) stage of 
ballooning instability that 

leads to an ELM crash 

Nonlinear stage of 
instability with ELM 

filaments that are strongly
sheared by poloidal flow 

Red areas near the separatrix correspond to 
large perturbations that are associated with 
development of an ELM crash
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Summary
•ELM cycle is modeled with the extended MHD NIMROD code 

coupled with the kinetic XGC0 code 
– Filament-like structures are observed at the plasma edge

● It is found that two-fluid are important for these simulations

•Several codes are applied in the relevant range of parameters 
and results are cross-coupled

– Kinetic code XGC0 to follow the dynamics of H-mode pedestal 
recovery

– Ideal MHD stability ELITE code to check peeling-ballooning stability 
conditions in the H-mode pedestal region

– Extended MHD code NIMROD to study an ELM crash 
•ELM modeling is computationally challenging because of

– Wide range of time and spatial scales involved
– Problem is highly anisotropic and stiff
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