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Motivation

e Current Gyrokinetic-Maxwell Equations in use are not fully electromagnetic
— The A — ¢ field model does not have 4B,

e GK equations, if derivable, might not be solvable in the edge or I'TB with strong “equilib-
rium’” variations in

— E x B flow of thermal speed

— density or temperature over ~ 10p;

e For E'TG simulations with non-adiabatic ion, N-point averaging with N > 4 is needed. It
could be easier to follow the gyro-motion.



The Vlasov ion/Drift kinetic electron model
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Ampere’s equation
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Convert Ampere’s Equation into Ohm’s Law

Starting with Ampere’s equation
V x B = py(J; — ene(Ver + ueb))

Taking derivative w.r.t. time,

V X 8_B = Lo <8Ji — en@(aVel - 8ueb))
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Only use the parallel component of this equation! Use Faraday’s equation for LHS,
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and electron momentum equation,
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And neglect b - %{Z (smaller by mass ratio), we then obtain parallel Ohm’s Law
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The remaining two components of the Ampere’s equation are rewritten as
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Explicit time evolving is unstable at small £, due to
the compressional Alfvén wave

Combine the momentum equation and the Maxwell equations to obtain Ohm’s law:
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0f method for ions and electrons
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For p; scale instabilities k,p; ~ 1, B ~ 1%, the compressional wave frequency w/€2; > 10,

;A\t << 0.01 is needed! We would like to be able to use €2; At ~ 0.1, i.e., just small enough
to get the gyro-motion.



e Quasi-neutral
— No displacement current in the Faraday’s equation

e No transverse electron inertia (no electron polarization current). Electron FLR and polar-
ization current can be added for reconnection problems.

e The magnetic field perturbation is 3-D, whereas in the A; — ¢ model 0B =V x (A4b) is
2-D

e Unable to combine A — ¢ field model with Vlasov ions. With GK ions ¢ is obtained from
GK Poisson equation. With Vlasov ions the equation

n; = Te

does not determine ¢! However, taking time derivative of this equation to the second order
results in
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We have not been able to produce the Alfven waves solving this equation.



Implicit Scheme
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e Particle coordinates and electron weights (hence pressure) explicitly advanced.

e Jons weights first advanced without E, then used to gather J:,
’UJ;< = ’U)Zn + QEﬁl’UHAt
o After fields solved, update ion weights

Wit = wi +qE" v At



Implicit Scheme (cont’d)

e It turns out necessary to treat the increment to J ,; due to E¥™! fully implicitly

03 1i(x) = Aty qEYT () VIS (x — x T

j
0J 1i(x) = gn; At Eﬁ“(x) =40J'.

e [terate on the difference between 0J ; and 0J’ ;

e 3 ~ 4 iterations are accurate enough



3-D Shearless Slab Alfven Wave Simulation
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32 x 32 x 32 grids, 1,048, 576 particles per species
For shear Alfvén wave, k; = 0, kjp; = 0.00626, initialize with 0B .
For compressional Alfven wave, ky = 0, k, p; = 0.019, initiallize with 0B,



V1. Driven Whistler Instability

Neglect ions, VO P, in perpendicular Ohm’s law,
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Dispersion relation
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Whistler Instability—Simulation
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o 3 =0.064, kjp; = 0.0284, Kep; = 0.1
e 16 x 32 x 32 grids, 1, 048, 576 particles per species, At€); = 0.1.

e For small v (k.p; = 1.7, 2.0) smaller time step needed to reduce numerical damping of
implicit scheme

e Jons are strongly stabilizing. Even unstable, the modes are not whistler.



The MIHD equations for the shear Alfven wave
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Quasi-neutrality
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The simulation results
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Field-line-following coordinates are employed in the simulations
Global geometry is applied

The gap spectra are observed

There is a global Alfven wave with the frequency fallen in the gap

BUT, the frequency of the global Alfven wave does not agree with
analytical MHD result



SUMMARY

e We proposed a kinetic simulation model with Vlasov ions/Drift kinetic electrons which is

— Quasi-neutral and fully electromagnetic

— suitable for MHD scales and plasmas with strong E x B flows
e The time step for explicit integration limited by the compressional Alfvén wave
e Semi-implicit scheme allows ; At > 0.1

— Treat Faraday’s law and E, - v, in the ion weight equation implicitly

e Demonstrated 3-D shearless slab simulation for compressional and shear Alfvén waves, and
whistler instabilities driven by electron temperature gradient





