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Outline

• AMR-MHD

– Level-set method for poloidal planes

– Results of pellet injection simulations

• Implicit Newton-Krylov Method for MHD

– Wave-structure based preconditioner



3

“Shaped” Plasma Cross-section

• Structured mesh approaches to handle “shaped” plasma

cross-sections

– Mapped grids in poloidal plane

• Embedded boundary approach

– Cut-cells

• Level-set approach

– No cut-cells

– Boundary representation

is implicit
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Cartesian Grid Representation of Irregular

Boundaries
• History

– Shortley & Weller (1938) - Poisson equation on irregular geometries

– Richtmyer & Morton (1964) - track moving fronts using polygonal
representation

– Noh (1964) - overlapping Lagrangian-Eulerian grid methods for material
interfaces

– With AMR: Chern & Colella (1987), Bell, Colella & Welcome (1991)

– Embedded boundary AMR: Colella & Applied Numerical Algorithms Group at
LBL (ongoing work under SciDAC funding)

• Level-Set Approach

– Original idea by Osher  & Sethian (1988)

– Mulder, Osher & Sethian (1992) - for interface tracking compressible gas
dynamics

– Fedkiw et al. (1999) - for multi-material interfaces (ghost fluid method)

– Arienti et al. (2003) - Eulerian - Lagrangian coupling in fluid-solid interactions

– Aslam (2003) - Multidimensional extrapolation using a PDE approach

– Many others - see review paper by Osher & Fedkiw (2001)
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Level-set Approach

• Advantages

– Most computations done on a regular grid - efficiency, accuracy

– Grid generation is tractable

– For moving or free boundaries the motion of the grid does not affect
the regularity of the grid away from the boundary

– No coordinate singularities or large variation in metric terms to
contend with

– Geometric multi-grid for elliptic solvers

– Local refinement

• Disadvantages

– Boundary representation is implicit

– Mesh not aligned with flux surfaces

– Conservation to machine accuracy is not fulfilled

– Generally lower order of accuracy at boundary - unsuitable for
problems with boundary layers

– Requires more theory particularly stability theory
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Level-set Approach for Tokamak MHD

• Adopt the level-set approach to handle shaped poloidal cross-section

– Underlying grid is Cartesian

– For now the boundary is fixed

• Basic Idea

– “Ghost cells” are commonly used in regular grid computations to impose
boundary conditions

– Generalize the above idea to have a “ghost fluid region”

– Extrapolate variables from the “real fluid region” to the ghost region such that
physical (& numerical) boundary conditions are satisfied

Ghost Region

Real Fluid Region

(x)=0 defines

 the boundary
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• Single fluid resistive MHD equations in conservation form

Level-Set Applied to MHD

•Additional constraint · B =0. Numerically treated with a

nonconservative source term  · B (Powell et al 1999) 

Hyperbolic terms Diffusive terms

Density: Ablation

Energy :Electron heat flux

•Semi-analytical Model by

Ishizaki et al. (Phys.

Plasmas 2000)

–Assumes Maxwellian

electrons and neglects

pitch angle scattering

–Requires integrals of

density along field lines

–Challenging to evaluate

efficiently for hierarchical

meshes (Samtaney et

al., SciDAC 2007)
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Level-set Implementation Details

• Define the fixed plasma boundary (x)

• Compute a signed distance function (x) such that
(x)<0  (>0) denotes the real fluid (ghost fluid) domain
(x)=0 defines (x)

• Extrapolate quantity q(x,t) from real to ghost region
– Constant extrapolation requires n.  q = 0 where n = n(x) is the normal to the level set function  (x)

defined as n =   / |   |

– H( ) is the Heaviside function. The above equation is a linear hyperbolic PDE with characteristics
along the direction n. It reaches steady state a distance x away from the boundary at time=x
(because the characteristic speed is unity). At steady state q is extrapolated from the real fluid to the
ghost region.

– The above equation is marched forward in time using a first order forward Euler and a first order
upwind method (upwind in n). For linear and quadratic extrapolation consult Aslam (JCP 2003)

– Extrapolate two thermodynamic quantities (density, pressure) and tangential components of the
velocity and magnetic fields

– Reflect the normal velocity and magnetic field components to obtain the zero normal flow and
perfectly conducting boundary conditions

• The ghost region 0< (x)<3  x need be filled in for second order method at each stage of
the time integration scheme. Once the boundary conditions are set in the ghost region the
finite volume inside the real fluid region are updated in the usual fashion
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Axisymmetric Localized High-Density Region

• 2D Axisymmetric
simulations of the
motion of an initially
localized high-
density high-
region

• Mesh details

– Base mesh:
64x64

– 2 levels with
refinement ratio of
4

– Effective
resolution
1024x1024

Density t=0

Density t=1.25
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Axisymmetric Localized High-Density Region

• A local minimum in
B  is created  on
fast time scales.
Conditions for an
interchange
instability are
established and the
high density blob
rapidly translates in
the direction of
increasing major
radius

• The high density
region expands,
collapses on itself,
and propels forward
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Error Estimates and Accuracy

• Motion of an initially smooth Gaussian blob

• Error estimated by computing an “exact” solution

at resolution 256 x 256

2.129.72e-64.23e-51.591.36e-44.11e-4Pressure

1.831.18e-54.19e-51.321.60e-44.00e-4B

3.291.04e-61.02e-52.342.31e-51.17e-4BZ

4.025.73e-79.35e-63.491.30e-51.46e-4BR

2.104.65e-82.0e-71.784.46e-71.53e-6U

1.822.94e-61.04e-52.011.81e-57.30e-5UZ

1.663.63e-61.15e-50.922.68e-55.08e-5UR

2.171.07e-24.8e-21.970.13e-00.51e-0Density

p2L2 (1282)L2 (642)pL  (1282)L  (642)Variable
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Mass and Energy Conservation

• The boundary representation is implicit and hence

mass and energy are not conserved to machine

accuracy
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3D Localized High-Density Region

• 3D simulations of the motion of an initially localized high-density high-  region

•  Details

–    [- /16, /16]

– Tokamak geometry

– Visualization in computational
space

– Base mesh: 64x64x64

– 1 level with refinement
 ratio of 4

– Effective resolution
256x256x256

– 2 level run on
Cray XT4 at NERSC
still to be diagnosed due
to the size of the
 data sets (~500-650 Mb/
time step)

Note: Staircasing is a visualization feature; the actual boundary is smooth
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3D Localized High-Density Region

• Dominant flow in
toroidal direction

• High density region
is short-lived

• Maximum density
– t=0 

max
=1000

– t=0.125 
max

=150

– t=0.625 
max

=60

– t=1.25 
max

=10

– t=3.75 
max

=2.2

– t=6.25 
max

=1.15
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3D Localized High-Density Region

• Local
minimum in
B  at early
times

• B  recovers
its initial
equilibrium
value by
t=1.25
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3D Localized High-Density Region

U  range (-0.13,0.13)

UR range (-0.007,0.014)
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3D Localized High-Density Region

• Pressure



18

• Semi-analytical Model by Parks et al. (Phys. Plasmas 2000)

– Assumes Maxwellian electrons and neglects pitch angle scattering

Where                                        ,                  and

K1 is modified Bessel function of the second kind, and

• Energy is not conserved because the electron heating

model acts as an energy source with no corresponding

energy sink along field lines to balance it

Electron Heat Flux Model
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AMR Opacity Computation

• Grid refinement strategy ensures that
 the pellet cloud is completely contained
within the finest level. Set =0 in ghost cells.
Assume 

amb
<<

• The upstream values of  and  are
 computed using linear interpolation

– The value of  is initialized on the grid boundary.

• This computation is iterated until convergence. Points get updated in a traveling
wave for each + and - (In the figure points a & c have + updated first)

• In a parallel multiblock AMR calculation each box first performs integration of  with
values filled into its ghost cells from neighboring boxes. The box-by-box integration
is repeated until convergence.
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HFS Pellet Injection Simulation

• Grid statistics

– Base mesh: 64 x 64 x 64

– 4 levels of refinement with a factor of 2

– Equivalent fine mesh: 10243

– Finest mesh volume~ 0.00027 x total volume

• Domain is a one-eighth sector of a tokamak

• Pellet radius = 1mm

• Toroidal field on axis = 1T

• “Far away” electron temperature = 4Kev

• Parks heating model

– Ablation determined by computing computing
the incident heat flux on the pellet surface

• All the incident heat flux goes to sublimate the
pellet

• Overestimates ablation at early times (because
dissociation and ionization are neglected)

max
~2 x 106
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HFS Pellet Injection Simulation

• By t=5, the electron heat flux increases the
pressure increases to 0.1 (local  = 0.35)

– This is insufficient to trigger the rapid instability
seen in the earlier 3D simulation of the localized
high-density high-  region

– There is no local minimum yet in B

• The high pressure region is a 3D annulus around
the pellet caused by the electron heat flux Pressure t=0 (0.008,0.01)
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HFS Pellet Injection Simulation

• The toroidal magnetic field is not very different
from the initial condition

• The pellet ablated material flows along field lines
in the toroidal direction
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JFNK Method for Resistive MHD

• Resistive MHD written in conservation form

• Rewriting

• The solution at the next time level to the entire system of equations is
expressed as the solution to the following nonlinear equation

• This is solved using Newton’s method (For an alternative approach with nonlinear

multigrid for MHD, please visit the poster by Adams & Samtaney, Poster 12 Session 1B, Monday)
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JFNK: Solvers and Preconditoners

• The linear system at each Newton iteration is solved with a Krylov method in

which an approximation to the linear system J U = -F is obtained by

iteratively building a Krylov subspace of dimension m

• Krylov methods can lead to slow convergence. This is especially true for MHD where

the Jacobian is ill-conditioned. Preconditioners help alleviate the problem of slow

convergence and are formulated as follows

• The basic idea of preconditioners is that the matrix JP-1 or P-1J is close to the identity

matrix, i.e., P is a good approximation of J. Furthermore, to make preconditioning

effective, P-1 should be computationally inexpensive to evaluate
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JFNK: Resistive MHD - Preconditioner

• Instead of solving J  U = -g solve (J P-1) (P  U) = -g, i.e., right preconditioning is
employed

• The preconditioner takes into account the local wave structure

• Preconditioner is exact for any 1D system of hyperbolic conservation laws

• The preconditioner is split into a hyperbolic and a diffusive component

• Denoting by (.) the location of the linear operator action, the ideal MHD Jacobian is

where Jx is the Jacboian of the hyperbolic flux in the x-direction. Lx is the spatially local
left eigenvector matrix for Jx. Jy, Ly, Jz, and Lz are similarly defined
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JFNK: Resistive MHD - Preconditioner

• Directional splitting is employed to further approximate the
preconditioner

• Decoupling into 1D wave equations along characteristics

• Thus along each direction, we get a system of linear wave equations.
For each wave family, we now get a  sequence of tridiagonal linear
systems which can be efficiently solved. In parallel we use the
method proposed by Arbenz & Gander (1994)
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JFNK: Resistive MHD - Preconditioner

• For spatially varying J(U) a correction solve is involved

• Since this has no spatial couplings, the resulting local block systems may be
solved easily by precomputing the 8x8 block matrices Pcorr at each location
coupled with a LU factorization

• Only the fastest stiffness inducing waves need to be solved. Furthermore,
accuracy may be sacrificed because this is done in the context of the
preconditioner.

•   It can be shown that the error bound (Reynolds, Samtaney, Woodward,
2008)  if q-fastest waves are preconditioned is

• Error from preconditioning q-fastest waves is dominantly

• Omission of waves with small speeds compared to the dynamical time scale will
not significantly affect the precondtioner accuracy
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JFNK: Resistive MHD - Preconditioner

• Diffusion Preconditioner Pd: This solves the subsystem

• To solve Pd y = b for y = [ y , y  v, yB
, ye]

T

Steps 2,3 and 5 are solved using a geometric multigrid approach. Step 4 may
be approximated with finite differences instead of constructing and
multiplying by individual submatrices
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Verification Tests

From Reynolds, Samtaney & Woodward, JCP 2006

Linear wave propagtion

test. 

Computational time for an explicit
method scales as S3/2

Initial conditions: Perturbed Harris
sheet proposed by Birn et al. (J.
Geo. Lett. 2001)

Pellet Model Problem
with a similar
separation of scale as
the tokamak case.
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Verification Test: Linear Wave Propagation
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Verification Test: Kelvin-Helmholtz
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Preconditioner Optimizations

Linear wave test

KH 2D test
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Summary
• Developed a level-set approach for MHD

– The fixed boundary of the plasma in the poloidal plane is implicitly represented

– The interior has a regular Cartesian mesh

• No mapped grids, metric terms and coordinate singularities (advantage)

• Mesh is not aligned with flux surfaces (disadvantage)

– Boundary conditions imposed by extrapolation using PDEs and reflecting the
normal components of velocity and the magnetic field

• Simulated the motion of a localized high-density high-  region in 2D
(axisymmetric) and 3D with AMR

– Instability triggered in short times after the formation of a local minimum in the
toroidal field

• 3D AMR HFS Pellet injection

– Parks electron heating model

– High pressure annulus forms around the pellet due to electron heat flux

• Developed a wave-structure based preconditioner for a Jacobian-Free
Newton-Krylov method applied to MHD

– Preconditioner is exact for hyperbolic conservations laws in 1D
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