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Introduction

• The vacuum equations are intrinsically linear so that the solutions obtained with
the 2 dimensional VACUUM code are still applicable for nonlinear problems pro-

vided that the boundary conditions are still approximately linearized, and the “back-
ground” equilibrium is still approximately two-dimensional.

• One way to perhaps accomplish this is with a “buffer zone” between the fully
developed nonlinear plasma and the vacuum. In this zone would be a transi-
tion from the nonlinear regime to an approximately linearized, two-dimensional
boundary outside of which the vacuum solution is valid and can be applied as
outlined below to establish the outer boundary conditions. Nonlinear codes such
as M3D-C1, M3D or NIMROD would treat both the plasma core and the buffer zone
with the VACUUM code treating the region to infinity or to a conducting shell.

• We assume that the buffer zone is bounded by either:

I. A toroidally symmetric virtual boundary. Or

II. A toroidally symmetric resistive shell.
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The field representation in M3D and M3D-C1

The parameterm determines the applicability for M3D (m = 1) and M3D-C1 (m = 2).
In the cylindrical coordinate system (R, φ, Z), the magnetic field, B is derived from

a vector potential, A involving two scalar variables f and ψ:

A = ψ∇φ +Rm∇φ×∇f − R0 lnR eZ (1)

B = ∇ψ ×∇φ− Rm−2∇⊥f
′ + F∇φ (2)

with F ≡ R2∇·Rm−2∇⊥f + R0 (3)

and ∇⊥f ≡ ∇f −
∂f

∂φ
∇φ ≡ ∇f − f ′∇φ. (4)

M3D: B = ∇ψ ×∇φ +R0∇φ− R−1∇⊥f
′ + R2∇·R−1∇⊥f (5)

M3D-C1: B = ∇ψ ×∇φ +R0∇φ−∇⊥f
′ +R2∇2

⊥f (6)

VACUUM: B
v = ∇ψv ×∇φ + F v∇φ + ∇χ, ∇2χ = 0 (7)

The terms involving ψv and F v are the axisymmetric (n = 0) contributions to the field.

• Note the similarity between the representations of VACUUM and M3D-C1.
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The Current, k1J = ∇× B

k1J = ∇F ∗ ×∇φ+
1

R2
∇⊥ψ

′ −
[

∆∗ψ − (m− 2)Rm−2f ′z
]

∇φ

−(m− 2)Rm−4f ′′∇Z (8)

=
(

∇F +Rm−2∇f ′′
)

×∇φ +
1

R2
∇⊥ψ

′ −
[

∆∗ψ − (m− 2)Rm−2f ′z
]

∇φ (9)

where

∆∗ ≡ R2∇ ·
1

R2
∇⊥ =

∂2

∂R2
−

1

R

∂

∂R
+

∂2

∂Z2
. (10)

In component form,

k1J J · ∇Z =
∂F

∂θ
+Rm−2

∂f ′′

∂θ
+

J

R2
∇Z · ∇⊥ψ

′ (11)

k1R
2
J · ∇φ = −∆∗ψ − (m− 2)Rm−2f ′z (12)

k1R
2∇φ× J = ∇⊥F

∗ +Rm−2∇⊥f
′′ + ∇φ×∇⊥ψ

′. (13)
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The response to the magnetic scalar potential, χ

The VACUUM code solves for the magnetic scalar potential, χ, as a response C, toBn,
the normal component of the magnetic field at the surface which separates the MHD

region from the vacuum region. This surface is parameterized by [Rs(θ), Zs(θ)], 0 ≤

θ ≤ 2π in a local coordinate system (Z, θ, φ). ∇Z is normal to the surface with J =

(∇Z ×∇θ·∇φ)−1. The response relation is written as

χ(θ, φ) =
∑

l

Cl(θ)B
v
l e

−inφ, n 6= 0 (14)

where the normal field, written as an angular flux density, Bv(θ) ≡ J∇χ·∇Z (since the
flux is

∫

Bs dθ dφ), is expanded in a set of suitably chosen (orthonormal) basis functions
appropriate for the source surface,

Bv(θ) =
∑

l

Bv
l ϕl(θ). (15)

The response Cl(θ), contains the effects of the external vacuum region, including the
option of an external conducting shell. It depends only on the geometry of the bound-
ary and the conductors and need only be calculated once for the number of expansion
functions required for the application.
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Matching across a virtual boundary – no shell:
All components continuous

• We assume here that the plasma is highly resistive at the virtual boundary so that
there is no support for the existence of a skin current.

– Hence, in addition to the usual continuity ofBn we require that all components
of the field are continuous.

• The normal component of B (angular flux):

Bp ≡ JB · ∇Z =
∂ψ

∂θ
− Rm−2J∇Z · ∇⊥f

′. (16)

The covariant surface components of B, e.g., Bθ = J∇φ×∇Z · B etc., are

Bθ = −

(

J

R2
∇Z · ∇ψ +Rm−2

∂f ′

∂θ

)

(17)

Bφ = F = R2∇·Rm−2∇⊥f +R0. (18)

k1J J · ∇Z can be written as

k1J J · ∇Z =
∂

∂θ
R2∇ ·Rm−2∇⊥f +

∂

∂φ

(

J

R2
∇Z · ∇ψ +Rm−2

∂f ′

∂θ

)

(19)

=
∂

∂θ
Bφ −

∂

∂φ
Bθ (20)

as expected using Eqs. (17) and (18).
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Matching across a virtual boundary – 2

Since Bn is continuous across a surface, we can substitute Bp for Bv in Eq. (14), i.e.,

χ(θ, φ) =
∑

l

Cl(θ)

[

∂ψ

∂θ
− Rm−2J∇Z · ∇⊥f

′

]

l

e−inφ, (21)

using Eq. (16). this gives a relation between χ and the plasma quantities, ψ and f . we
assumed here that the plasma quantities are expanded in ϕl(θ).

Under the assumption that the fields are continuous χ can be eliminated as follows.
For the covariant component along the poloidal direction, we have

Bv
θ = J∇φ×∇Z · Bv =

∂χ

∂θ
=

∑

l

∂Cl(θ)

∂θ

[

∂ψ

∂θ
−Rm−2J∇Z · ∇⊥f

′

]

l

e−inφ, (22)

(23)

Substitute Eq. (16):

J

R2
∇Z · ∇ψ + Rm−2

∂f ′

∂θ
= −

∑

l

∂Cl(θ)

∂θ

[

∂ψ

∂θ
− Rm−2J∇Z · ∇⊥f

′

]

l

e−inφ. (24)

Thus, together with the continuity of the normal component of the magnetic field
used above, Eq. (24) provides a constraint on ψ and f for the vacuum boundary con-
ditions.
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Matching across a virtual boundary – continuous Bφ

For the covariant φ component, we find another relation between ψ and f at the
boundary:

R2∇·Rm−2∇⊥f = − in
∑

l

Cl(θ)

[

∂ψ

∂θ
−Rm−2J∇Z · ∇⊥f

′

]

l

e−inφ, n 6= 0 (25)

These are equivalent in a vacuum: differentiate Eq. (24) with respect to φ and Eq. (25)
with respect to θ:

∂

∂φ

(

J

R2
∇Z · ∇ψ +Rm−2

∂f ′

∂θ

)

= in
∑

l

∂Cl(θ)

∂θ

[

∂ψ

∂θ
−Rm−2J∇Z · ∇⊥f

′

]

l

e−inφ. (26)

∂

∂θ

(

R2∇·Rm−2∇⊥f
)

= − in
∑

l

∂Cl(θ)

∂θ

[

∂ψ

∂θ
− Rm−2J∇Z · ∇⊥f

′

]

l

e−inφ. (27)

The left sides are the terms in the perpendicular current given by Eq. (20). Either one
can then be used as the constraint that relates ψ and f at the boundary.

The vanishing of J · ∇Z can be imposed as an extra constraint or it will occur natu-
rally if the plasma resistivity at the interface is high enough.
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Derivatives in Rectangular Coordinates, (R,Z)

Relations valid at the surface [R(θ), Z(θ)]:

∂

∂θ
= Rθ

∂

∂R
+ Zθ

∂

∂Z
, (28)

J∇Z · ∇ = R

[

Rθ
∂

∂Z
− Zθ

∂

∂R

]

. (29)

In the expansion space of ϕl:
[

1

R
(RθψZ − ZθψR) − inRm−2(RθfR + ZθfZ)

]

l

= (30)

−
∑

l′

(

∂C

∂θ

)

ll′

[

RθψR + ZθψZ + inRm−1(RθfZ − ZθfR)
]

l′
, (31)

[

R2∇·Rm−2∇⊥f
]

l
= −in

∑

l′

Cll′
[

RθψR + ZθψZ + inRm−1(RθfZ − ZθfR)
]

l′
(32)

Here, Rθ, Zθ can be calculated from the parameterization of the boundary [R(θ), Z(θ)].
The VACUUM code provides the response matrices, Cll′ and (∂C/∂θ)ll′.
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Current in Thin Surfaces

Js

∇σ

∇Z

∇ϑ
Z = Z−
Z = Z+

χs+

B
s−

• Consider current carrying discontinuities whose resistivity and small but finite
thickness δ can be spatially varying.

• In a local generalized shell coordinate system (Z, ϑ, σ) the shell, bounded by sur-
faces of constant Z , is of uniform thickness ∆Z = Z+ −Z−.

• A divergence free representation of the shell current density J
s can be written in

terms of a current potential Is as

J
s =

∇Z ×∇Is

∆Z
(33)

where I(ϑ)s is assumed to be independent of Z .

• We first obtain the relation between the shell current and magnetic field then cal-
culate the jump in the fields across the shell.
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Faraday’s Law

The normal component of Faraday’s law, ∇ × E = − k3 ∂tB, together with Ohm’s
law E = ηJ relates the surface Laplacian of Is to B:

∇·

[

η
∇Z ×∇Is

∆Z
×∇Z

]

= − k3

∂

∂t
B·∇Z. (34)

In the global wall coordinate system, (Z, θ, φ) and using ∆Z ≈ |∇Z|δ(θ) where δ(θ) is
the thickness of the (thin) shell, Eq. (34) becomes after Fourier analysis in φ,

∂

∂θ

(

η

δ

R

(R2
θ + Z2

θ )
1/2

∂

∂θ
Is

)

− n2
η

δ

(R2
θ + Z2

θ )
1/2

R
Is = − k3

∂B

∂t
. (35)

Introducing amplitudes and dimensionless profile functions for resistivity, η → ηf η(θ),
and shell thickness, δ → δf δ(θ), one obtains,

LIs = −k3

δ

η

∂B

∂t
, (36)

where L is the self-adjoint operator

L =
∂

∂θ

(

f η

f δ
R

(R2
θ + Z2

θ )
1/2

∂

∂θ

)

− n2
f η

f δ
(R2

θ + Z2
θ )

1/2

R
. (37)
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Straight cylinder

For a straight cylinder shell of constant thickness and resistivity, periodic length
2πR0, and radius a, i.e., R = R0 + a cos θ, z = a sin θ, the solution to Eq. (36) is directly
found by expanding both Is and B in a Fourier series with coefficients Isl and bl so that
to the lowest order in a

Is =
∑

l

Isl e
ilθ (38)

with

Isl = k3

δ

η

a/R0

l2 + n2
a2

R2
0

∂bl
∂t

(39)

For more complicated geometries a standard procedure for obtaining the solution
of Eq. (36) is to construct the Green’s function of L from its eigensolutions, i.e.,

LKi(θ) = −h(θ)λiKi(θ) (40)

where h(θ) can be a convenently chosen weight function, and normalize the eigen-
functions so that

1

N

∫

K∗
i (θ)Kj(θ)h(θ) dθ = δij. (41)

N can be suitably chosen.
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Cross-section of the NSTX shell.
Real and imaginary parts of the Eigenfunctions, K(θ),

and the corresponding eigenvalues
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Relation between the coefficients, Isj and bj

Expand the fields in terms of the eigenfunctions,

Is(θ) =
∑

i

IsiKi(θ),
1

h(θ)

∂B

∂t
=

∑

j

∂bj
∂t
Kj(θ). (42)

One readily obtains

Isj = k3

δ

ηλj

∂bj
∂t

(43)

so that the relation between the current potential and Bn is:

Is(θ) = k3

δ

η

∑

j

1

λj

∂bj
∂t
Kj(θ). (44)

Note: The Green’s function, G(θ, θ′):

Is(θ) =
1

N

∫

dθ′
∑

j

Kj(θ)K
∗
j (θ

′)

λj
k3

δ

η

∂B

∂t
dθ′ (45)

≡ −
1

N

∫

G(θ, θ′)k3

δ

η

∂B

∂t
dθ′ (46)
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Ampere’s Law

Ampere’s law, ∇ × B = k1J
s, together with Stoke’s theorem gives the jump in the

fields from the inner (-) side to the outer (+) side of the shell.

Js

∇σ

∇Z

∇ϑ
Z = Z−
Z = Z+

χs+

B
s−

ϑ
a

b

c
d

In a local coordinate system, (σ,Z, ϑ),where the coordinate ϑ is aligned along an
arbitrary direction along the surface one obtains:

∮

B·dl = k1

∫

J
s ·dSσ (47)

with dϑ = J∇σ ×∇Z dϑ and dSσ = J∇σ dZ dϑ, so that
∫ b

a

B
+ ·dϑ +

∫ d

c

B
−·dϑ =

∫ ϑ

0

[

B
+ − B

−
]

·dϑ = k1

∫ b

a

∂Is

∂ϑ
dϑ, (48)

J
[

B
+ − B

−
]

·∇σ ×∇Z = B+

ϑ −B−
ϑ = k1

∂Is

∂ϑ
. (49)
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Ampere’s Law – 2

• If the outer region is current free then Eq. (49) becomes

Bs−
ϑ =

∂χs+

∂ϑ
− k1

∂Is

∂ϑ
. (50)

• The VACUUM code calculates χs+(θ) as a response to the normal field:

χs+(θ) =
∑

j

Cs+j (θ)bje
−inφ (51)

• Eq. (44) relates Is to bj, so that Eq. (50) becomes

Bs−
ϑ (θ) =

∑

j

∂

∂ϑ

[

Cs+j (θ)bj − k1k3

δ

η

1

λj

∂bj
∂t
Kj(θ)

]

e−inφ. (52)

(53)
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Relations between ψ and f with the resistive shell

Letting the coordinate ϑ in turn be θ or φ, we obtain respectively

Bs−
θ (θ) =

∑

j

∂

∂θ

[

Cs+j (θ)bj − k1k3

δ

η

1

λj

∂bj
∂t
Kj(θ)

]

e−inφ (54)

Bs−
φ (θ) = −in

∑

j

[

Cs+j (θ)bj − k1k3

δ

η

1

λj

∂bj
∂t
Kj(θ)

]

e−inφ. (55)

Recall that bj, B
s−
θ (θ) and Bs−

φ (θ) can be cast in terms of the scalar variables ψ and f of
the MHD or MHD-C1 code, i.e.,

∂bj
∂t

= N

∫

K∗
j (θ)

∂B

∂t
dθ (56)

Bp =
∂ψ

∂θ
− Rm−2J∇Z · ∇⊥f

′ (57)

Bθ = −

(

J

R2
∇Z · ∇ψ +Rm−2

∂f ′

∂θ

)

(58)

Bφ = R2∇·Rm−2∇⊥f +R0 (59)

• These equations, Eqs. (54) to (59) are the generalization of their no shell counter-
parts.

• Taking the limit of large η recovers the no-shell case.
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