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Introduction

e The vacuum equations are intrinsically linear so that the solutions obtained with
the 2 dimensional VACUUM code are still applicable for nonlinear problems pro-
vided that the boundary conditions are still approximately linearized, and the “back-
ground” equilibrium is still approximately two-dimensional.

e One way to perhaps accomplish this is with a “buffer zone” between the fully
developed nonlinear plasma and the vacuum. In this zone would be a transi-
tion from the nonlinear regime to an approximately linearized, two-dimensional
boundary outside of which the vacuum solution is valid and can be applied as
outlined below to establish the outer boundary conditions. Nonlinear codes such
as M3D-C1, M3D or NIMROD would treat both the plasma core and the buffer zone
with the VACUUM code treating the region to infinity or to a conducting shell.

e We assume that the buffer zone is bounded by either:

I. A toroidally symmetric virtual boundary. Or

II. A toroidally symmetric resistive shell.




The field representation in M3D and M3D-C1

The parameter m determines the applicability for M3D (m = 1) and M3D-C1 (m = 2).
In the cylindrical coordinate system (R, ¢, Z), the magnetic field, B is derived from
a vector potential, A involving two scalar variables f and :

A=yVé+R"VoxVf—RInRey (1)
B=VyxVé¢—R"*V, f'+FVo (2)

with  F=R*V-R"*V.f+ Ry (3)

and VLfEVf—g—i;ng = Vf—f'Vo. (4)

M3D: B=VYxVé+RNVo—R 'V, f'+RV-R'V,f (5)
M3D-Cl: B =V¢ xVo+RVo—-V, f +RV:f (6)
VACUUM: B'=Vy'xVo+ F'Vé+ Vy, Vx =0 (7)

The terms involving 1" and F" are the axisymmetric (n = 0) contributions to the field.

e Note the similarity between the representations of VACUUM and M3D-C1.




The Current, £/;J =V x B

kiJ =VF*x V¢ + vm (A" — (m = 2)R™ > f| V¢
—(m —2)R" 'V Z (8)
= (VF+R"Vf") x V¢ + vm (A" — (m = 2)R"*f]V¢ 9)

where

0> 1 (‘9 0>

A* Vo=V, = — — =
=V R?VL 9F  ROR 07 {10)
In component form,
_OF 28f”
]ﬁjJ'VZ—%—I—R 20 RQVZ V. (11)
ki R*J -V =—ANY —(m—2)R"*f! (12)

MRV xJ =V F*+R" >V f"+V¢x V . (13)




The response to the magnetic scalar potential, x

The VACUUM code solves for the magnetic scalar potential, x, as a response C, to B,,
the normal component of the magnetic field at the surface which separates the MHD
region from the vacuum region. This surface is parameterized by [R*(0), Z*(0)], 0 <
# < 27 in a local coordinate system (2,6, ¢). VZ is normal to the surface with J =
(VZ x V0-V¢) . The response relation is written as

X(0,0) =Y Ci(0)Bie ™™, n#0 (14)
l

where the normal field, written as an angular flux density, B(0) = JVx-V Z (since the
fluxis [ B® df d¢), is expanded in a set of suitably chosen (orthonormal) basis functions
appropriate for the source surface,

B'(0) = Bipi(0). (15)
l

The response C;(#), contains the effects of the external vacuum region, including the
option of an external conducting shell. It depends only on the geometry of the bound-
ary and the conductors and need only be calculated once for the number of expansion
functions required for the application.




Matching across a virtual boundary — no shell:
All components continuous

e We assume here that the plasma is highly resistive at the virtual boundary so that
there is no support for the existence of a skin current.

— Hence, in addition to the usual continuity of B,, we require that all components
of the field are continuous.

e The normal component of B (angular flux):

BP=JB.-VZ = ?ﬁ R"2JVZ-V . f. (16)
The covariant surface components of B, e.g., By = JV¢ x VZ - B etc., are
_ ‘7 m—2 f
By = — (RQVZ Vi + R 89) (17)
By,=F = R°V-R"*V,f+R,. (18)
k1 JJ - VZ can be written as
_ a 2 m—2 6 j m— 2af/
kFiJJ-VZ = 8¢9Rv R"*V.f+ ¢( VZ.-ViYy+ R 20 (19)
0 0
8QB¢ — a—¢Bg (20)

as expected using Egs. (17) and (18).
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Matching across a virtual boundary — 2

Since B, is continuous across a surface, we can substitute B” for B" in Eq. (14), i.e.,

Z Ci(0 [ — R"PJVZ-V.f ] e ", (21)
z
using Eq. (16). this gives a relat1on between x and the plasma quantities, ¢ and f. we
assumed here that the plasma quantities are expanded in ¢;(6).
Under the assumption that the fields are continuous x can be eliminated as follows.
For the covariant component along the poloidal direction, we have

—JVéxVZ B’ = Ox _ Zaclw) [W —Rm—2jvz.mf’] e ", (22)

90 ~ 206 |09 |
(23)
Substitute Eq. (16):
j m— Qaf/ o 8C7<9> a¢ m—2 / —ineo
A VE VR == o | o — RMTIVE VLS e (24)

Thus, together with the continuity of the normal component of the magnetic field
used above, Eq. (24) provides a constraint on ¢ and f for the vacuum boundary con-
ditions.
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Matching across a virtual boundary - continuous B,

For the covariant ¢ component, we find another relation between ¢ and f at the
boundary:

R*V-R"°V | f= — ch, [ —R"2JVZ. va] —me £ (25)
l

These are equivalent in a vacuum: differentiate Eq. (24) with respect to ¢ and Eq. (25)
with respect to 0:

d J m—2 f . acl(e) a¢ m—2 . / —ing
(%( VZ.-V¢+R ae) mzl: 5 [ae‘R JIVZ va]le .(26)

0
56 |

R*V-R"7*V . f) = mzacz [ — R"*JVZ-V, f’] e (27)
l

The left sides are the terms in the perpendicular current given by Eq. (20). Either one
can then be used as the constraint that relates ¢) and f at the boundary.

The vanishing of J - V.Z can be imposed as an extra constraint or it will occur natu-
rally if the plasma resistivity at the interface is high enough.




Derivatives in Rectangular Coordinates, (R, 7)

Relations valid at the surface [R(0), Z(0)]:

0 0 0
20 Reﬁ + Zea—Z, (28)
0 0
In the expansion space of ¢;:
1 .
[E (Ropz — Zgor) — inR™ (R fr + Z@fz)] — (30)
z
oC o

- Z 90 (Ror + Zgwz + inR™(Ry fz — Z@fR)L,, (31)

I mw

[R*V-R"*V ], = —in Z Cuw[Rovr + Zogoz + inR" '(Rofz — Zofr)],  (32)
l/

Here, Ry, Zy can be calculated from the parameterization of the boundary [R(6), Z(6)].
The VACUUM code provides the response matrices, C;y and (9C/00);;.




Current in Thin Surfaces

e Consider current carrying discontinuities whose resistivity and small but finite
thickness J can be spatially varying.

e In a local generalized shell coordinate system (2,4, o) the shell, bounded by sur-
faces of constant Z, is of uniform thickness AZ = Z+ — Z—.

e A divergence free representation of the shell current density J° can be written in
terms of a current potential Z* as

 VZXVI?
- AZ
where Z(¢)” is assumed to be independent of Z.

JS

(33)

e We first obtain the relation between the shell current and magnetic field then cal-
culate the jump in the fields across the shell.
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Faraday’s Law

The normal component of Faraday’s law, V x E = — k3 9,B, together with Ohm’s
law E = nJ relates the surface Laplacian of Z* to B:
VZ x VI? 9,
V- [n Az X VZ] — kga B-VZ. (34)

In the global wall coordinate system, (2,0, ¢) and using AZ ~ |V Z|5(0) where §(0) is
the thickness of the (thin) shell, Eq. (34) becomes after Fourier analysis in ¢,

0 (n R 0 o1 (R2 + Z2)1/? OB
d 75| — n2d 75 — _
BY. (5(35 + Z2)1200 ) " £rn (5)

0 R ot

Introducing amplitudes and dimensionless profile functions for resistivity, n — nf"(9),
and shell thickness, § — 6 f° (0), one obtains,

LT5 = —kg—g (36)

where L is the self-adjoint operator

0 (f” R 8) 2f”(R@jLZQ)l/2

L=\ Fmyara) " F R 57)
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Straight cylinder

For a straight cylinder shell of constant thickness and resistivity, periodic length
2m Ry, and radius a, i.e., R = Ry + acosf, z = asind, the solution to Eq. (36) is directly
found by expanding both Z* and B in a Fourier series with coefficients Z; and 0; so that
to the lowest order in a

0 =) Iy (38)
[
with
5 a/Ry, b
Ty — )/ Ob (39)
Ty 2l ot
R

For more complicated geometries a standard procedure for obtaining the solution
of Eq. (36) is to construct the Green’s function of £ from its eigensolutions, i.e.,

LEK;(0) = —h(0)Ai(0) (40)

where h(6) can be a convenently chosen weight function, and normalize the eigen-
functions so that

1 .
= / KX (0)K;(0)h(6) do = 5. (41)

N can be suitably chosen.




Real and imaginary parts of the Eigenfunctions, K(0),

Cross-section of the NSTX shell.

and the corresponding eigenvalues

MON APR 6 16.48.33 2009 SURF_LAP s
NSTX
1.5 i
1.0} 1
w .5r 4
=z
<
.
& ot 0 1
N
|
o
-5l i
1.0} 1
1.5 1
. . . . . . . .
(S} v = T} (S} w©v (S} v
T. ’ ' ' - - N o
R-CEN=  0.943 Z-CEN=  0.060 W-CIRCUM= 8,332 ARATIO= 1,250
ISHAPE= 0 A=  0.000 B=  0.000
AW=  0.000 BW=  ©0.000 CW=  0.000 DW=  0.000 TW=  0.000
ABULG=  0.000 BBULG=  0.000 TBULG=  0.000

WASYM= 2.00@ WRAD = @.754 WELONG=
AW= 0.000 BW= ?.000 CW= ?.000 DW=

2.193 TRIANG = ?.000
0.000 TW= ?.000

MON APR 6 16:48:33 2009 SURF _LAP NSTX
12 12 ETGENVALUES
11 2.1939E+01
10 2.1402E401
9 1.1503E401
1 1 8 1.1319E+01
A / \ 7 8.32956400
6 8.1855E+00
5 7.1096E+00
4 6.4618E400
10 10 3 4.6609E+00
2 2.7B40E+0D
1 1.2646E+00
9 9
8 8
7 7
6 6
5 5
) ) N
3 3
2 2 \\\\\_////fﬂ////,\\\\\
1 \‘/, |
[ L L L L L L [} L L L L L L
= 8 8 8 © & 8 s 8 © ©
N 90 o = o A © o = o

NORMALIZED EIGENFUNCTIONS/2:

REAL AND IMAGINARY PARTS.
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Relation between the coefficients, 7 ;’ and b;

Expand the fields in terms of the eigenfunctions,

() J—

7°(0) = » I7K;(0), —— =Y —K,(0). 42
One readily obtains
s, 0 Ob;
17 = k377>\j 5 (43)
so that the relation between the current potential and B,, is:
0 1 0b;
0) = ks— Yy ——LK;(0). 44
0) =k 335 0 (44)
Note: The Green’s function, G(6,¢’):
1 K;0)K:(0") §0B
°(0) = — [ d’ Ly —— db
0=~/ D LT (45)
1 0 0B
= — — 0,0 ) ks—— do’ +
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Ampere’s Law

Ampere’s law, V x B = k;J°, together with Stoke’s theorem gives the jump in the
fields from the inner (-) side to the outer (+) side of the shell.

S+

\V4 X 4 -
— z_ 7
Vﬁ—f d
0

c
B~

In a local coordinate system, (o, Z,1),where the coordinate ¢ is aligned along an
arbitrary direction along the surface one obtains:

jq{B.dl - k1/JS-dSU (47)

with d¥ = JVo x VZdJ and dS, = Vo dZ dJ, so that
b s
o1 d (48)

b d 0
/B+~d19+/ B“-dﬁ:/ B*-B].d9 — ki ,
a c 0 a ov

oz°
o9

J | B"—-B7|:VoxVZ=B,—-B;, = k (49)




Ampere’s Law — 2

e If the outer region is current free then Eq. (49) becomes

aXs+ L OL*
o0 Loy

By =

e The VACUUM code calculates x** () as a response to the normal field:

XHO) =) Ci(O)be
J

o Eq. (44) relates 7° to b;, so that Eq. (50) becomes

~ .. 51 b, »
By (0) = Z% [Cj+<‘9)bj - k1k35>\—ja—;Ky‘(9) e .

J
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(50)

(51)

(52)

(53)
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Relations between ¢ and f with the resistive shell

Letting the coordinate ¢ in turn be 6 or ¢, we obtain respectively

S— a S+ o éia_b —ino
B (h) = Z 5 [c (6)b, /ﬁkgn y atK(é’)] (54)
By ( ——mz [c&+ )b, —klkgé)\i%—b[( (9)] e~ (55)

Recall that b;, By~ (0) and B~ (9) can be cast in terms of the scalar variables ¢) and f of
the MHD or MHD-C1 code i e.,

— N / K3 (0)— d9 (56)

B = a ; — R™ 2JVZ V.f (57)
_ j m— Qaf/

By = (RQVZ VY + R = (58)

By=R*V-R" 7V f+ Ry (59)

e These equations, Egs. (54) to (59) are the generalization of their no shell counter-
parts.

e Taking the limit of large 7 recovers the no-shell case.




