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TWO-FLUID EQUILIBRIUM MODEL THAT CAN BE IMPLEMENTED
WITH CURRENT VERSIONS OF EXTENDED-MHD CODES

V-B=0. ij=VxB. E——Vd

V-(nu)=V-(nu,) =0 u—u—i°

nu,) = nu.) =0 , e = U, en‘]
mmn(u, - V)u, + V(nT) + V-P“Y — en(u, x B-Vd) = 0

V(nT.,) + en(us x B—V®) = 0

B-VI, = B-VI.= 0

m,nT, ou,m  Ou,p 3 ,
Pf’% B ZleBzeﬂmBl ( ox i ox ) (5nk i B2Ban) T U=k

The ion gyroviscosity can be switched off by setting 7, = 0, which results in a Hall-MHD model.



AXISYMMETRIC SOLUTION (9/9¢ = 0)
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The three components of the generalized Ohm'’s law yield:
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The three components of the ion momentum equation yield equations for V,, n and u,,.



1. COLD ION SOLUTION WITH PURELY TOROIDAL FLOW

Setting 7, = 0 and ¥, = 0, the three components of the ion momentum equation yield:
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This system admits the integral
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2. FINITE ION TEMPERATURE SOLUTION WITH PURELY TOROIDAL FLOW

Setting ¥V, = 0 but 7, # 0, the three components of the ion momentum equation yield:
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This is a system of three equations for the two unknowns u,, and n, which has a special

rigid rotation solution only if 7, is constant:

R

mLQ()RQ }

Nw) e {m D)

17, = 1,0 = constant , = ()y = constant , n

with the additional constraint
d

N TodN
o Teln(—)] — ey — T

N,




3. COLD ION SOLUTION WITH FINITE POLOIDAL FLOW

Setting 7, = 0 and ¥, # 0, the components of the ion momentum equation in the directions of

V¢ and u, are
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which have the general integrals
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Combining this result with the solution for ¢® and the component of the ion momentum

equation in the direction of VU, one gets the following equations for n and V,:
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4. FINITE ION TEMPERATURE AND FINITE POLOIDAL FLOW

In the general case, 7, # 0 and ¥V, # 0, the components of the ion momentum equation

in the directions of Vi and u, are
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These have the integrability constraints
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PERTURBATION NEAR SINGLE-FLUID SOLUTION

In the limit p,/L — 0 and d,/L — 0 our system recovers the single-fluid solution:
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Since P“Y < O(p,/L nT,), in a perturbative scheme we may evaluate the leading order gyrovis-

cosity based on this single-fluid flow solution.

Neither of the two integrability conditions imposes any restriction on the R? (.(y)) Vy part

of the single-fluid flow.

Constraints imposed by the integrability conditions on the n™! d¥ ., (1))/dy B part of the flow

are being investigated.



