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• Nonaxisymmetric wall forces in ITER

– are produced on conducting structures during a disruption.

– can be a significant fraction of total magnetic pressure

• Simulations with M3D

– used thin resistive wall model

– external magnetic perturbations calculated with GRIN code

– Jump in magnetic field gives wall force

– scaling with wall resistivity and wall thickness
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Wall Force

The plasma is bounded by a thin wall of thickness δ and resistivity ηw.
The current in the wall is given by

Jw = ∇× B ≈
n̂

δ
× (Bv − Bp)

where n̂ is the outward normal to the wall, Bv is the vacuum magnetic
field just outside the wall, and Bp is the magnetic field in the plasma,
just inside the wall.

The normal component of the force density is

Fwn = n̂ · Jw × Bw = −
1

δ
(Bv − Bp) · Bw

where the continuity of the normal component of the magnetic field,
n̂ · (Bv − Bp) = 0 was used, which follows from ∇ · B = 0.
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Inside the wall assume that

Bw =
1

2
(Bv + Bp).

The normal wall force density can be expressed

Fwn =
1

2δ
(|Bp|

2 − |Bv|
2).

It has a simple physical meaning. It is the difference in magnetic pres-
sure across the wall, divided by the wall thickness.

Integrating over the wall thickness δ gives the magnetic pressure on
the wall. The normalized wall pressure Pw is

Pw =
(|Bp|2 − |Bv|2)

2B2
0

where B0 is the vacuum toroidal magnetic field on axis.
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Disruption Simulation

In the following M3D is used to calculate a disruption. The initial state
is an ASDEX equilibrium, AUG 12/09/2004 #014271, calculated by
CHEASE, and written to a file in EQDSK format. This was read into
M3D and used to generate a mesh and initialize a nonlinear simula-
tion. The initial equilibrium had q = 1.1 on axis. Multiplying the mag-
netic flux ψ, and the toroidal current by a scale factor, the pressure by
the square of the scale factor, an approximate near equilibrium initial
state was obtained with q = 0.52 on axis. This state models what
might have occurred if outer layers of plasma were scraped off during a
VDE. The resulting state is highly unstable to an external kink. A small
m = n = 1 perturbation was added to the plasma and it was allowed
to evolve nonlinearly.
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In the simulation the Lundquist number was chosen to be S = 104 on
axis and S = 10 at the wall. The resistivity is calculated self consis-
tently as T−3/2, where T is the temperature. When the temperature
decays during the simulation, the value of S drops, although its value
is held fixed at the wall. The large value of resistivity was chosen to
improve numerical stability. The wall constant, the wall resistivity ηw
divided by wall thickness, ηw/δ, was varied from 10−4 to 10−1.

In the simulation shown in the following pictures, ηw/δ = 10−2.
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Poloidal Magnetic Flux ψ

(a) (b) (c)

(a) initial magnetic flux contours of rescaled ASDEX equilibrium recon-
struction. (b) magnetic flux contours in the poloidal plane with toroidal
angle φ = 0, at time t = 39.8τA. The flux resembles a typical VDE. (c)
magnetic flux contours in the poloidal plane with toroidal angle φ = 0,

at time t = 46.6τA. There are no closed poloidal flux contours.
7



Temperature

(a) (b) (c)

(a) initial temperature contours in the poloidal plane with toroidal angle
φ = 0. (b) temperature contours at t = 39.8τA. The temperature has
dropped a factor of 6 from its initial peak. (c) temperature contours at
time t = 46.6τA, where the temperature has dropped by a factor of 40
from the initial peak.
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Time history
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(a) time history of the total plasma pressure (red) and total toroidal
current (green). (The current rings a bit near zero.) The temperature
and current collapse coincide, about t = 20 − 40τA. (b) time history
of the peak normal wall force (red) multiplied by a factor of 10, and
the TPF (toroidal peaking factor, green). The maximum normal wall
pressure is about 25% of the vacuum magnetic pressure! However it
is large for a very short time. A more average value is 5%.
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Spatial structure of wall magnetic pressure

magnetic pressure on the wall as a function of poloidal angle (horizon-
tal) and toroidal angle (vertical) at time t = 46.6τA .
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Numerical Difficulties

The wall magnetic pressure is very localized in space and time. This
may well be due to numerical effects. Disruption simulations tend not
to converge.

• Current generated (kink) disruptions cause magnetic island over-
lap, stochastic magnetic field. Arbitrarily short spatial scales are
generated.

• Pressure driven (ballooning modes) are unstable for all wavelength
in ideal MHD.

• Dissipation is required to limit the spatial scales. A large resistivity
η varied from 10−4 on axis to 10−1 at the wall. A spatial constant
perpendicular viscosity was used, µ = 10−3.
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Dissipative Numerical Methods

Two additional methods were used to improve numerical stability:

• Upwinding to maintain positivity of density and temperature

• Nonlinear diffusion:

Dnonlinear ∼ dt(ṽ2)

• To get reliable results, calculations have to be repeated with higher
resolution and less dissipation.
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Scaling of Force with Wall Resistivity

The normal component of the magnetic field is continuous at the wall:
it satisfies

∂Bn

∂t
= −

ηw

δ
∇ · (I − nn) · (Bv − B

p)

The tangential, ℓ component of the wall force is

Fwℓ =
1

δ
Bn(B

v
ℓ − B

p
ℓ).

Approximately

Fwℓ =
δ

ηwk⊥
Bn

∂Bn

∂t

where k⊥ is the poloidal wavenumber of the mode driving the disrup-
tion.
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Assume that Bn is independent of ηw - it depends on the amplitude of
the unstable displacement - and

Fwℓ ≈
δ

ηwk⊥
γB̃2

This is infinite for an ideal wall! Let’s assume that Fwn ∼ Fwℓ and the
ideal and resistive wall limits can be combined, to give a normal wall
force varying as

Fwn ∝
B̃2

1 +
ηwk⊥
γδ

For an ideal mode, γ ∼ vA/R. A highly resistive, thin wall will lower
the wall force. This is verified by the simulations.
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Wall pressure as a function of ηw/δ.
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Variation of peak wall pressure Pw = Fwnδ/B2
0 as a function of wall

resistivity divided by wall thickness, ηw/δ. The data is well fit by the
formula, Pw ∝ 1/(1 + αηw/δ) where α = 0.0125.
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Future Work

• use higher resolution will be used to improve results.

• try initial states corresponding to different disruption scenarios

• do simulations with ITER double wall
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