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Development history: 2D Nonlinear
• Initial formulation solved two-field reduced incompressible equations
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on a 2D slab using reduced quintic (Q18) basis functions on a regular 
triangular mesh.  Verified with tilt mode.

• Next, out-of-plane velocity and B components were added, giving four-
field reduced equations:
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This was verified with the GEM magnetic reconnection problem.



Reduced two-fluid
• Upgraded to two-fluid with addition of hall term, hyper-dissipation:
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Also verified with the GEM magnetic reconnection problem.
Resistive MHD Two-fluid



Full two-fluid equations
• Next, advanced to full two-fluid MHD by evolving density, energy.  With

ˆ ˆ,zU z V zχ= ∇ × +∇ +V
the new equations are
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• The pressure and density now appear in the momentum equation along with 
the Braginskii gyroviscous stress tensor:

dn p
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...which is then rewritten using the differential approximation
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Implicit time advance
This enables a splitting of the eight-field equation time advance into separate 
operations with smaller block matrices:

1
13 13 13

23 23 2

12 12 12

21 2

11 11 11

3

31 32 33 31 32 33 31 32

2 21 22 2

33 3

1 22 2

1
n n nv v v

v v v

v v v v v v

v v v

v v v v

v v

v

v v v
z

v v

v v
z

v

S D R
S D R

S D R
S
S S S D D D R R R

S U D U
S V D D

p O
V R R I

O
O

R

χ χ

ψ+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = ⋅ + ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

velocity

followed by single-field updates of density and total pressure, and finally
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Also verified with the tilt mode and GEM magnetic reconnection problem.



2D Toroidal Option
• Now in (R, φ, z) coordinates, change variables using M3D-like formulation:
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This version has been used to calculate tokamak equilibria with flow, 
including dissipative effects, parallel and gyroviscosity, and realistic heating, 
current drive, and particle sources.



Present Status: 3D Linear
• Mesh has been generalized to fit triangles of arbitrary 

size and shape within arbitrary curved boundaries 
without impacting efficiency significantly.

• Complex perturbation with a single mode number is 
superimposed on a fixed real 2D equilibrium, 
advanced until convergence on eigenmode, e.g.

– Matrix depends on equilibrium only; factored only 
once.

– Validated against PEST, NOVA, ELITE, M3D.

– Can access S up to 108.

– Can use time steps up to 10 global Alfvén times, 
limited by accuracy.
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Outline of Plans
• Extensions

– Upgrade 3D linear option to eight-field equations with equilibrium flow.
• Modify Grad-Shafranov solver to include flow
• Linearize Hall terms, equilibrium flow terms

– Add 3D elements to support 3D nonlinear option.
• Reduced, two-field equations
• Four-field
• Eight-field

– Optimize the 3D linear solvers.
– Develop a hybrid option using gyrokinetic δf PIC routines adapted from M3D.

• Applications
– Sawtooth
– ELMs
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3D Basis Functions
Take tensor products of the Q18 2D basis functions Qj(R, Z) on triangles with 
orthogonal Hermite cubic polynomial functions Φi(φ), which have C1 continuity:
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Two-Field Version
• Beginning with the reduced system

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1 ,n n nS U D U R Oψ+
⋅ = ⋅ + ⋅ +

expand the vector U in terms of basis functions:
2 18 2

, ,
,

1 1 1 1 1 1

( ) ( , ) ( ),
M N M

m q m w m q m
w j q j q

m q w j m q

U U Q R Zϕ ϕ
= = = = = =

⎡ ⎤= Φ = Φ⎣ ⎦∑∑∑∑ ∑∑ U� � �

18
, ,

,
1 1

( , )
N

m q m q w
w j j

w j
U Q R Z

= =

⎡ ⎤ =⎣ ⎦ ∑∑U� �where is the usual 2D function over plane m.

This results in a block stencil coupling neighboring planes:
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12 × NV DOF per 
node
Pictured here:
7 nodes per plane
4 planes
4 × 7 × 12 × NV = 
336 NV DOF total

3 processors/plane 
× 4 = 12 
processors total

NV=Number of Variables (1,2 or 3)

Domain Decomposition Example



Optimizing the 3D Solve
• Computing matrix elements is a local operation and should 

scale well with 3D domain decomposition.

• Solution of the linear equations is global and requires 
optimized solvers.
– Using PETSc allows flexibility in choice of solver, options.
– Precondition global solve with existing 2D solve in each plane?
– ILU preconditioner based on near diagonal terms from 2D matrices?
– Multigrid preconditioner in toroidal direction?

• Solicit advice from applied math collaborators in PETSc and 
TOPS.



A Hybrid Kinetic Option for M3D-C1

• Adapt M3D’s gyrokinetic δf PIC subroutines for hot particles.
– Particle equations of motion are advanced on subcycles of the fluid time step 

using interpolated values of the magnetic field.
– Particles couple back to fluid through kinetic stress tensor in momentum 

equation.
– Consider energy-conserving symplectic integration technique to improve 

accuracy in particle push.

• A full f option may be considered for non-Maxwellian distributions.

• Optimize based on careful data organization and operation ordering.

• Benchmark with fishbone instability against NOVA-K and hybrid M3D.



Applications
• Linear version

– Effects of two-fluid and flow terms on stability boundaries for ideal and 
non-ideal modes.

• Nonlinear version
– Two-fluid sawtooth in high-S regime; giant sawteeth: kinetic effects
– ELMs: mitigation strategies
– Disruptions: vessel forces, currents
– Tearing modes: destabilization by sawteeth

Jφ ∇•V |∇×V| Vφ p


	Nonlinear M3D-C1 Plans
	Development history: 2D Nonlinear
	Reduced two-fluid
	Full two-fluid equations
	Implicit time advance
	2D Toroidal Option
	Present Status: 3D Linear
	Outline of Plans
	Slide Number 9
	Two-Field Version
	Slide Number 11
	Optimizing the 3D Solve
	A Hybrid Kinetic Option for M3D-C1
	Applications

