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Development history: 2D Nonlinear

Initial formulation solved two-field reduced incompressible equations
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on a 2D slab using reduced quintic (Q,g) basis functions on a regular
triangular mesh. Verified with tilt mode.
Next, out-of-plane velocity and B components were added, giving four-

field reduced equations:
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This was verified with the GEM magnetic reconnection problem.



Reduced two-fluid

» Upgraded to two-fluid with addition of hall term, hyper-dissipation:
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Also verified with the GEM magnetic reconnection problem.

Resistive MHD Two-fluid




Full two-fluid equations

* Next, advanced to full two-fluid MHD by evolving density, energy. With
V=VUxZ+Vy+V,zZ,
the new equations are
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» The pressure and density now appear in the momentum equation along with

the Braginskii gyroviscous stress tensor:
nd_V:_Vp—V-H+...
dt

...which is then rewritten using the differential approximation
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Implicit time advance

This enables a splitting of the eight-field equation time advance into separate
operations with smaller block matrices:
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followed by single-field updates of density and total pressure, and finally

[ cb b
S11 S12

b b
S21 Szz

b
813

b
Sz3 )

b b
_831 Sz

b
S3 ]

magnetic field,
electron pressure

W
I

Pe

n+1

74

[ b b
R11 R12

b b
RZl Rzz

b b
i Ry Ry

U

1V

z

Ve

n+1

Also verified with the tilt mode and GEM magnetic reconnection problem.



2D Toroidal Option

 Now in (R, ¢, z) coordinates, change variables using M3D-like formulation:
V=R’VUxVp+wR*Vp+R?V y

B=VxA=VyxVp-V f'+(F+RV-V, f)Vgp
and use projection operators to separate components:
incompressible component ”d ‘R vV -V, x R > ﬂd ‘R RZVLVi xV-
toroidal component dezR VR Ve — ”dZR vR*Vo-

compressible component —”d ‘RvV,-R? — ” d°RR*V v, -

This version has been used to calculate tokamak equilibria with flow,
Including dissipative effects, parallel and gyroviscosity, and realistic heating,
current drive, and particle sources.



Present Status: 3D Linear

* Mesh has been generalized to fit triangles of arbitrary
size and shape within arbitrary curved boundaries
without impacting efficiency significantly.

o Complex perturbation with a single mode number is
superimposed on a fixed real 2D equilibrium,
advanced until convergence on eigenmode, e.g.

p+] U |+( 1y, 7)+ PV 7 +inpyd =0

— Matrix depends on equilibrium only; factored only
once.

S$=105 S=106 S=107 S5=108

— Validated against PEST, NOVA, ELITE, M3D.
— Canaccess S up to 108,

— Can use time steps up to 10 global Alfveén times,
limited by accuracy.




Outline of Plans

e [Extensions

— Upgrade 3D linear option to eight-field equations with equilibrium flow.
» Modify Grad-Shafranov solver to include flow
 Linearize Hall terms, equilibrium flow terms

— Add 3D elements to support 3D nonlinear option.
» Reduced, two-field equations
« Four-field
. Eight-field
— Optimize the 3D linear solvers.
— Develop a hybrid option using gyrokinetic ot PIC routines adapted from M3D.

» Applications
— Sawtooth
— ELMs



3D Basis Functions

Take tensor products of the Q.4 2D basis functions Q;(R, Z) on triangles with
orthogonal Hermite cubic polynomial functions @;(¢), which have C! continuity:
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Two-Field Version

Beginning with the reduced system
[s]-[u]" =[D]-{UT +[R]-[y]" +[0].

expand the vector U in terms of basis functions:
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where U™ |=3%">"UrQ}"(R,Z) is the usual 2D function over plane m.
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This results in a block stencil coupling neighboring planes:
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Domain Decomposition Example

NV=Number of Variables (1,2 or 3)
] ) :
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Optimizing the 3D Solve

Computing matrix elements is a local operation and should
scale well with 3D domain decomposition.

Solution of the linear equations is global and requires
optimized solvers.
— Using PETSc allows flexibility in choice of solver, options.
— Precondition global solve with existing 2D solve in each plane?
— ILU preconditioner based on near diagonal terms from 2D matrices?
— Multigrid preconditioner in toroidal direction?

Solicit advice from applied math collaborators in PETSc and
TOPS.



A Hybrid Kinetic Option for M3D-C!

Adapt M3D’s gyrokinetic of PIC subroutines for hot particles.

— Particle equations of motion are advanced on subcycles of the fluid time step
using interpolated values of the magnetic field.

— Particles couple back to fluid through kinetic stress tensor in momentum
equation.

— Consider energy-conserving symplectic integration technique to improve
accuracy in particle push.

A full f option may be considered for non-Maxwellian distributions.

Optimize based on careful data organization and operation ordering.

Benchmark with fishbone instability against NOVA-K and hybrid M3D.



Applications

Linear version

— Effects of two-fluid and flow terms on stability boundaries for ideal and
non-ideal modes.

o v v
Nonlinear version

— Two-fluid sawtooth in high-S regime; giant sawteeth: kinetic effects
— ELMSs: mitigation strategies

— Disruptions: vessel forces, currents

— Tearing modes: destabilization by sawteeth
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