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Time-Advance Accomplishments over the
Current Funding Cycle

« The implicit leapfrog algorithm has been analyzed
with differential approximation.

* Nonlinear Newton solves have been applied to center
V-VV in the velocity advance and JxB in magnetic-

field advance for the implicit leapfrog implementation.

« New preconditioning capability incorporates selective
Fourier-component coupling.

« An implicit solve for the full system has been
implemented for comparison.



The relative efficiency of time-centered and staggered
advances needs to be tested.

 NIMROD'’s staggered advance often requires yAt=0.03 for
1% accuracy on non-ideal modes.

— Physical fields are solved separately, so the algebraic systems are
relatively small.

« Time-centered advances just need yAt=0.35 for 1%

accuracy on all modes.
— All fields are solved simultaneously, so algebraic systems are
larger and yet less well conditioned.

« Recent computational work is starting to provide apples-to-
apples comparisons.

— U-WI group is implementing a 6-centered advance for the linear
two-fluid system.

— Tech-Xis coupling NIMROD to PETSc’s nonlinear and linear
algebraic solvers.



It is possible to use NIMROD'’s ‘framework’ for 6
centered computations.

* The generic 6-implicit time-advance is

sl =000) = af-adoc( s 0-006(" 1)

 The NIMITH code is a reorganized and augmented ver3|on of
NIMROD for advancing f=(V,.V,.Vy.B,.B,.By.n T)

At present, NIMITH is being developed for linear computations.

« Several options are incomplete (aniso therm. cond.; GV+flow,
etc.).

* The second part of the presentation covers the coupling to PETSc
for nonlinear implicit solves.

* The linear operator developed for NIMITH will provide
alternative possibilities for preconditioning the nonlinear solve in
PETSc.



Test results show both promise and problems at this point.

 Aside: normalization is important!

 Test cases (all linear) include sheared-slab and cylindrical tearing, and
internal kink in cylindrical and toroidal geometry.

* The test of two-fluid tearing in a sheared slab is the kd.=0.238
computation from the benchmark with the Ahedo-Ramos theory.

« Comparison of error in growth rates
confirms 1% error at yAt=0.35 with the 10’
centered computation. implicit

Ieapfrog
» The implicit leapfrog consistently 10°
requires a time-step that is ~10 times
smaller for the same accuracy, and
each step runs ~2.5 times faster.

« Computations with hyperbolic
pressure profiles and w>>y are

problematic at this point: 4
Centered computations seem to be 0 Tyt

more prone to developing noise and Error in 2-fluid growth rates from impl.
divergence error. leapfrog and 6=1/2 computations.
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Basis functions: sensitivity to the V-B control
parameter and other observations in recent
tests motivate further consideration.

* Incompressible FE and spectral computations use separate,
discontinuous representations for pressure that are of lower
polynomial degree than flow-velocity.

* We have tested the use of different polynomial degree for
different fields, but all representations were continuous.

 Using continuous representations for fields that can be
discontinuous causes a variety of problems: depending on details,
spectral pollution, noise, slow convergence, etc.

 NIMROD's basis is designed for non-ideal systems, where there
is enough smoothing to prevent discontinuity in the physical fields.



A potentially important use of discontinuous bases in
NIMROD is to improve magnetic divergence control.

 The diffusive correction may be used with a discontinuous

auxiliary field ¢ %B=—VXE+Kdiva¢ . ¢=V-B

9 [A-BdVol=-[EVxAdVol+fdS-AxE—xk ., [¢V-AdVol
o divb

[ve¢dVol= [vV-BdVol forall v, A in the appropriate space

» The discontinuous auxiliary field can be eliminated in the static
condensation step prior to the linear solve.

 This is equivalent to penalty methods for incompressible flow.

* It should make the magnetic-field matrix less stiff and better
conditioned.

 Using discontinuous n and continuous (nV) can be applied to
iIsothermal high-beta conditions.



JFNK Provides Nonlinear Implicit Capability

* JFNK - lterative (Newton type) method to solve nonlinear
F(u)=0
* Action of the Jacobian (in building Krylov subspace) is

approximated
F(d + ev) — F(u)
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— Don’t need to form the analytical Jacobian

* Preconditioning is needed to attain reasonable convergence
rates

— Preconditioner usually a simple approximation to the full
Jacobian

— Right preconditioned GMRES
— Physics-based preconditioning (Chacon 2008)



Approach to Applying JFNK within
NIMROD

Non-invasive

— Don’t change the structure of the code
— Adapt to the existing routines

Use as much functionality as possible

— Less work, faster code

Interface with PETSc

— KSP library for linear solves
— SNES library for nonlinear solves

Staged approach:

— N=0
 Fully Implicit solve for velocity
* Fully Implicit MHD

— N>0, extended MHD, ...



Goal is fully implicit solve for all equations

« Apply Crank-Nicholson to nonlinear equations and solve for
updates

 Evaluate all fields at the same time value
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Symbolic Form for Fully
Implicit Solve for MHD system

« Linearize to compute the Jacobian

0 Um} An

> | 0 Dy 0 Upp AT
JAX =1 0 Dy Ugp AB
| Ly, Ly % AV

n VT L\?E D

Extended MHD => M is not diagonal



Physics-based preconditioning
method follows Chacon 2008

* Following Chacon (2008) apply LDU on 2x2 matrix and invert

M U 175 [I -MUl[MY0 I 0
L D,y 0 I 0 P LM~ I

schur

where Pschur — DA"/’ — LM_lU

* Approximate Pschur With

AV o S L
AV L 7 VAT 4 AT . VT

PyAV =l
fV n At

o Atz’ijdeaLl(A‘?)

 Where Liwa is the ideal MHD operator which contains all of
the wave propagation information

— Py M~! matrices already exists in NIMROD (2D)

— Physics-based pre-conditioning is same physics as our
semi-implicit operator



Existing NIMROD infrastructure can be
reused in performing the PETSc calls

M U1t [ MWW MY 0 I 0
L Dy |0 I 0 P;' || LM I

Diagonal inversions already coded in NIMROD

Need to apply the upper (U) and lower (L) parts

— Use existing matrix-free rhs routines in NIMROD

For L part:

— Temporarily set variables to zero and use the functional for V

A A — i 7
Fy(AZ) = m, (n+ n)(qutL v)—nv + m?(n + An)(v+ Av) - V(v+ Av) + m?nv - Vv
m;

bV AV [+ An)(v + AV)] + T [
k
2
Similarly for U terms

— Temporarily set variables to zero and use the functional for
n,T,B

1 1
+ V[(n+An)(T+AT)]+§V[nT]—§V><(B+AB) ><(B+AB)—§V><B><B



Status

Nonlinear Functional is computed

— Copies:
 NIMROD vectors into PETSc vector
« Put NIMROD residuals into PETSc functional structure
« PETSc vector into NIMROD vectors

— Currently have many copies: Not optimized presently

« E.g., need specialized copies for Schur complement-reduced vectors in
preconditioning step

On the fly nondimensionalization works
— Produces residuals all within one order of magnitude
— Error equally distributed across equations
— All variables are equally modified by nonlinear updates
GMRES with no preconditioning
— Terribly slow convergence
In progress: Finishing preconditioner
— L and U terms



Summary/To Do / Future Work
for nonlinear solves in NIMROD

« Current Challenges

— Complete Preconditioning for the Full MHD system
* Future Work

- 3D

« Complex (Fourier) coefficients
« Same (axisymmetric) preconditioner

— Efficient method of applying preconditioner
- Multigrid to apply D!
— Upwinding-like smoothing for preconditioner
— Including closures+ (anisotropic closures, Hall terms)



Preconditioning: Why use multigrid
methods?

Multigrid methods treat all scales of the problem with the
combination of smoothing and coarse grid corrections

The Multigrid
V-cycle
iprolongation
(interpolation)
\estriction * Done properly, each level
‘ p communicate small amount
\ 7 of data
/ .
Note: \ / * Surface/volume of computation/
smaller grid \ ,' . . .
: \V communication gives good
| First Coarse Grid ] scaling properties

* HYPRE’s BoomerAMG has
scaled to 125K processors for 3D
7-Pt Finite Difference Method.



Extended MHD contains many
operators that challenge linear solvers

* Full extended MHD system in full matrix notation:

D, 0 0 Uy An

AT

AR_| O Dr 0 Uy 3
0 0 Dg Ugp AB

Ly, Lyr Ly Dy | \ AV

* Within these sub-matrices, contain difficult linear matrices:

Operator | Physics Eqn. Properties
Dihermal Anisotropic T. HPD and
Thermal Diffusion Non-Symmetric
D, .. Resistive Diffusion B HPD
Lideal MHD Waves Vv HPD
Lovhistler Whistler Waves B Non-Symmetric




Why are these operators
particularly challenging?

Consider anisotropic heat conduction:

Dinermal(ATy) = V - ((H” — ,)bb - VAT, + kb x VAT, + MV?M;)

Extreme anisotropy causes extreme condition numbers
— Also places constraint on spatial discretization => high-order FE
High-order FE’s generally do not satify div-curl identities exactly

This admits small but nonlocal finite eigenvalues to curl-curl
operators

=> Standard iterative methods will not work well for these
operators

Dyes(AB) = V x (lv’ x _\.B>
L0

AMG methods for curl-curl operators require spatial discretization
schemes that satisfy div-curl instabilities (e.g., staggered meshes)
and yield local curl-free components eliminated by smoothing.



Anisotropic operators with curl-curl
are unique to MHD community

 Linear wave operators have elements of curl-curl but with

Ligeat(AV) = ! [\— x B x V x (A‘ X B) — BxV x [T X (_\.l % B)H

L0

v [A\f: .Vp + :; pV - A“:]
Luhistier(AB) = V x % [(V X B"“""Q) x AB + (T X AB) X B’HZ]
« Many approaches exist for MG including those tailored to
each operator (e.g., most AMG methods, many ML methods)

« Approach here: focus first on handling the complexity of high-
order FEs for diffusion problems and later consider more

complicated curl-curl operators.



Proposal: Use low-order system as pre-
conditioner for high-order system

-V (DVg) = f

V

(DV6, V) = (f.0) ¥ eV

v\

(DVéu, Vim) = (f,vn) Youw eV (DVer,Vor) = (fun) Yo € VE

Denser High-Order System Sparse Low-Order System



Automatic Preconditioner

Let A, be the i element stiffness matrix associated with matrix high-order finite
element matrix, A,. Goal: Find C;that minimizes

1
> 2 [ Awsk — Ciskllg
skgN(A;) K

where €ig(Ai) ={(si,Ai)}i—1,, and N(C;) = N(A,). C,is defined to have a
nonzero pattern (i.e., sparsity) similar to employing bilinear finite elements. We
then place the nonzeros of C;in a vector, z, define a matrix, G, , and redefine
the system as C;s, = G, z. We then solve for z with H representing the null

space of A,
Reformulation of \,s;, — C;sy, Least-Squares System for the Coefficients of C;
1
Fe (s
A 1
[ g o)
G\ _ ‘ , ' (s G'G HT z\ [ GTs
H a ' a ' -\ 0 H 0 v ) 0
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Conclusions

 Initial linear results with a time-centered advance are
mixed.

« Some cases show second-order convergence and 1%
error at yAt=0.35.

« Other computations are more prone to divergence.
Control via discontinuous bases should help.

* Nonlinear Newton solves have been accomplished with
minimal changes to NIMROD.

* Planned work will bring the nonlinear PETSc coupling
to production-level computations.

* Preconditioning based on low-order discretization and on
spectral decomposition of submatrices is being tested.

« Efficiency in the construction of the automatic
preconditioner is being improved.



Extra slides



Proof-of-principle case focused just on
advective operator

» Discretized velocity equation
1
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— Sovinec: Newton method implemented within NIMROD's
infrastructure exploiting the bi-linear nature of the operator.

e Qur approach:
— Include the nonlinear term F(AV) =LAV + N(AV) + R

— Precondition GMRES using L
— Calculate the action of the Jacobian using finite differencing on F



Velocity Results

PETSc 40" elements: .

 N=0 Tearing Mode Instability

J, = 0.1e®/009)°
B,(z=0) = 1
p(z) = 0.001B%/2

« Convergence in 2-3 GMRES its | ‘

— Similar to Sovinec’s method

— Roughly an order of
magnitude slower (but not
optimized, many caveats)



High-Order Finite Elements
lead to dense sub-matrices
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Figure 1. (a) A single 2D biquartic element with Gauss-
Legendre-Lobatto points used for the node locations and (b)-(d

three sample plots of the basis functions for the biquartic
elements.



Low-Order Finite Elements lead
to sparser matrices

(a) (b) (c) (d)

Figure 2: (a) A single 2D biquartic element with Gauss-
Legendre-Lobatto points used for the node locations and (b)-(d)
three sample plots of the basis functions for the bilinear finite
elements on the new higher resolution mesh.



Extended MHD

 NIMROD has the capability to solve the equations of XMHD

Dn = o
Ft—l—nV'V—O
DV > 2 =
n— = — B — I1
mnDt Vp+ J X Vv
DT, - S
nDt :_(7_1)[nTav Va+v'QQ+Ha VVa—UJQ—Qa}
oB - =
— E=0
5 V X
T [ e U N ) A
E+VxB=nl+— [-Vpo+ Jx B-V 1|+ — |24V (V- V)
ne €owye | Ot

... but we will only focus on MHD terms in discussing JFNK



Existing NIMROD Infrastructure can
be reused in performing the PETSc

The nondimensional functior%?gsyields residuals that are all
within an order of magnitude

Re-dimensionalizing ensures that each unknown is of the
proper order

Modified Jacobiamigrtherdimensionless functional

_ / _ B _
G,(Af)y — lim Dy [F (DlAX) + eF (DlAX) Dly] D5 F (DlAX)

e—0 €

= DQF/ (DlAi) Dly

The dimensional Jacobian is based on the dimensional
equations

— Already implemented in NIMROD

Leverage functionals and matrices already implemented in
NIMROD



Goal: create “automatic
preconditioner” based on any

Using this Iow-ordg‘rlfﬂll’?e-ggrcnleenrt. slf)aEcengseaSh

preconditioner requires a rediscretization of the problem on
the mesh constructed from high-order nodes (LO-DS).

We are building an approach through PETSc where this
idea can be used in an automatic sense by just passing off
the element stiffness matrices (LO-LS) and solving a least-
squares problem.

We ensure the sparse matrix constructed from the least-
squares problem approximates the smoother eigenvectors
from the element stiffness matrices and gets exactly the
nullspace.

In the next few months we will be adding to NIMROD code
that constructs the element stiffness matrices that allows us



