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Time-Advance Accomplishments over the
Current Funding Cycle

• The implicit leapfrog algorithm has been analyzed
with differential approximation.

• Nonlinear Newton solves have been applied to center
V⋅∇V in the velocity advance and J×B in magnetic-
field advance for the implicit leapfrog implementation.

• New preconditioning capability incorporates selective
Fourier-component coupling.

• An implicit solve for the full system has been
implemented for comparison.



The relative efficiency of time-centered and staggered
advances needs to be tested.

• NIMROD’s staggered advance often requires γΔt≅0.03 for
1% accuracy on non-ideal modes.
– Physical fields are solved separately, so the algebraic systems are

relatively small.
• Time-centered advances just need γΔt≅0.35 for 1%

accuracy on all modes.
– All fields are solved simultaneously, so algebraic systems are

larger and yet less well conditioned.
• Recent computational work is starting to provide apples-to-

apples comparisons.
– U-WI group is implementing a θ-centered advance for the linear

two-fluid system.
– Tech-X is coupling NIMROD to PETSc’s nonlinear and linear

algebraic solvers.



It is possible to use NIMROD’s ‘framework’ for θ-
centered computations.
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• The generic θ-implicit time-advance is

• The NIMITH code is a reorganized and augmented version of
NIMROD for advancing
• At present, NIMITH is being developed for linear computations.

• Several options are incomplete (aniso therm. cond.; GV+flow,
etc.).

• The second part of the presentation covers the coupling to PETSc
for nonlinear implicit solves.

• The linear operator developed for NIMITH will provide
alternative possibilities for preconditioning the nonlinear solve in
PETSc.
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Test results show both promise and problems at this point.
• Aside: normalization is important!
• Test cases (all linear) include sheared-slab and cylindrical tearing, and
internal kink in cylindrical and toroidal geometry.
• The test of two-fluid tearing in a sheared slab is the kdi=0.238
computation from the benchmark with the Ahedo-Ramos theory.
• Comparison of error in growth rates
confirms 1% error at γΔt≅0.35 with the
centered computation.
• The implicit leapfrog consistently
requires a time-step that is ~10 times
smaller for the same accuracy, and
each step runs ~2.5 times faster.
• Computations with hyperbolic
pressure profiles and ω>>γ are
problematic at this point:
Centered computations seem to be
more prone to developing noise and
divergence error.

Error in 2-fluid growth rates from impl.
leapfrog and θ=1/2 computations.



Basis functions: sensitivity to the ∇⋅B control
parameter and other observations in recent
tests motivate further consideration.

• Incompressible FE and spectral computations use separate,
discontinuous representations for pressure that are of lower
polynomial degree than flow-velocity.

• We have tested the use of different polynomial degree for
different fields, but all representations were continuous.

• Using continuous representations for fields that can be
discontinuous causes a variety of problems: depending on details,
spectral pollution, noise, slow convergence, etc.

• NIMROD’s basis is designed for non-ideal systems, where there
is enough smoothing to prevent discontinuity in the physical fields.



A potentially important use of discontinuous bases in
NIMROD is to improve magnetic divergence control.

• The diffusive correction may be used with a discontinuous
auxiliary field φ:
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• The discontinuous auxiliary field can be eliminated in the static
condensation step prior to the linear solve.
• This is equivalent to penalty methods for incompressible flow.
• It should make the magnetic-field matrix less stiff and better
conditioned.
• Using discontinuous n and continuous (nV) can be applied to
isothermal high-beta conditions.



• JFNK - Iterative (Newton type) method to solve nonlinear
F(u)=0

• Action of the Jacobian (in building Krylov subspace) is
approximated

– Don’t need to form the analytical Jacobian
• Preconditioning is needed to attain reasonable convergence

rates
– Preconditioner usually a simple approximation to the full

Jacobian
– Right preconditioned GMRES
– Physics-based preconditioning (Chacon 2008)

JFNK Provides Nonlinear Implicit Capability



• Non-invasive
– Don’t change the structure of the code
– Adapt to the existing routines

• Use as much functionality as possible
– Less work, faster code

• Interface with PETSc
– KSP library for linear solves
– SNES library for nonlinear solves

• Staged approach:
– N=0

• Fully Implicit solve for velocity
• Fully Implicit MHD

– N>0, extended MHD, …

Approach to Applying JFNK within
NIMROD



• Apply Crank-Nicholson to nonlinear equations and solve for
updates

• Evaluate all fields at the same time value

Goal is fully implicit solve for all equations



• Linearize to compute the Jacobian

• Define

Symbolic Form for Fully
Implicit Solve for MHD system

Extended MHD => M is not diagonal 



• Following Chacon (2008) apply LDU on 2x2 matrix and invert

    where
• Approximate          with

• Where          is the ideal MHD operator which contains all of
the wave propagation information
– Psf,             matrices already exists in NIMROD (2D)
– Physics-based pre-conditioning is same physics as our

semi-implicit operator

Physics-based preconditioning
method follows Chacon 2008



• Diagonal inversions already coded in NIMROD
• Need to apply the upper (U) and lower (L) parts

– Use existing matrix-free rhs routines in NIMROD
• For L part:

–  Temporarily set variables to zero and use the functional for V

• Similarly for U terms
– Temporarily set variables to zero and use the functional for

n,T,B

Existing NIMROD infrastructure can be
reused in performing the PETSc calls



• Nonlinear Functional is computed
– Copies:

• NIMROD vectors into PETSc vector
• Put NIMROD residuals into PETSc functional structure
• PETSc vector into NIMROD vectors

– Currently have many copies: Not optimized presently
• E.g., need specialized copies for Schur complement-reduced vectors in

preconditioning step
• On the fly nondimensionalization works

– Produces residuals all within one order of magnitude
– Error equally distributed across equations
– All variables are equally modified by nonlinear updates

• GMRES with no preconditioning
 – Terribly slow convergence

• In progress: Finishing preconditioner
– L and U terms

Status



• Current Challenges
– Complete Preconditioning for the Full MHD system

• Future Work
– 3D

• Complex (Fourier) coefficients
• Same (axisymmetric) preconditioner

– Efficient method of applying preconditioner
• Multigrid to apply

– Upwinding-like smoothing for preconditioner
– Including closures+ (anisotropic closures, Hall terms)

Summary/To Do / Future Work
for nonlinear solves in NIMROD



Preconditioning: Why use multigrid
methods?

• Done properly, each level
communicate small amount 
of data

• Surface/volume of computation/
communication gives good
scaling properties

• HYPRE’s BoomerAMG has 
scaled to 125K processors for 3D 
7-Pt Finite Difference Method.



• Full extended MHD system in full matrix notation:

• Within these sub-matrices, contain difficult linear matrices:

Extended MHD contains many
operators that challenge linear solvers



• Consider anisotropic heat conduction:

• Extreme anisotropy causes extreme condition numbers
– Also places constraint on spatial discretization => high-order FE

• High-order FE’s generally do not satify div-curl identities exactly
• This admits small but nonlocal finite eigenvalues to curl-curl

operators
=> Standard iterative methods will not work well for these
operators

• AMG methods for curl-curl operators require spatial discretization
schemes that satisfy div-curl instabilities (e.g., staggered meshes)
and yield local curl-free components eliminated by smoothing.

Why are these operators
particularly challenging?



• Linear wave operators have elements of curl-curl but with
anisotropy:

• Many approaches exist for MG including those tailored to
each operator (e.g., most AMG methods, many ML methods)

• Approach here: focus first on handling the complexity of high-
order FEs for diffusion problems and later consider more
complicated curl-curl operators.

Anisotropic operators with curl-curl
are unique to MHD community



Proposal: Use low-order system as pre-
conditioner for high-order system

Sparse Low-Order SystemDenser High-Order System



Automatic Preconditioner
Let Ai be the ith element stiffness matrix associated with matrix high-order finite
element matrix, AH.  Goal:  Find Ci that minimizes

where                                          and                            . Ci is defined to have a
nonzero pattern (i.e., sparsity) similar to employing bilinear finite elements.  We
then place the nonzeros of Ci in a vector, z,  define a matrix, Gk , and redefine
the system as Ci sk = Gk z.  We then solve for z with H representing the null
space of AH.

Reformulation of Least-Squares System for the Coefficients of Ci



Conclusions
• Initial linear results with a time-centered advance are
mixed.

• Some cases show second-order convergence and 1%
error at γΔt≅0.35.
• Other computations are more prone to divergence.
Control via discontinuous bases should help.

• Nonlinear Newton solves have been accomplished with
minimal changes to NIMROD.

• Planned work will bring the nonlinear PETSc coupling
to production-level computations.

• Preconditioning based on low-order discretization and on
spectral decomposition of submatrices is being tested.

• Efficiency in the construction of the automatic
preconditioner is being improved.



Extra slides



• Discretized velocity equation

– Sovinec: Newton method implemented within NIMROD’s
infrastructure exploiting the bi-linear nature of the operator.

• Our approach:
– Include the nonlinear term
– Precondition GMRES using
– Calculate the action of the Jacobian using finite differencing on

Proof-of-principle case focused just on
advective operator



• N=0 Tearing Mode Instability

• Convergence in 2-3 GMRES its
– Similar to Sovinec’s method
– Roughly an order of

magnitude slower (but not
optimized, many caveats)

Velocity Results



High-Order Finite Elements
lead to dense sub-matrices

Figure 1: (a) A single 2D biquartic element with Gauss-
Legendre-Lobatto points used for the node locations and (b)-(d)
three sample plots of the basis functions for the biquartic
elements.

         (a)                      (b)                    (c)                    (d)



Low-Order Finite Elements lead
to sparser matrices

         (a)                      (b)                    (c)                    (d)

Figure 2: (a) A single 2D biquartic element with Gauss-
Legendre-Lobatto points used for the node locations and (b)-(d)
three sample plots of the basis functions for the bilinear finite
elements on the new higher resolution mesh.



Extended MHD
• NIMROD has the capability to solve the equations of XMHD

… but we will only focus on MHD terms in discussing JFNK



• The nondimensional functional G yields residuals that are all
within an order of magnitude

• Re-dimensionalizing ensures that each unknown is of the
proper order

• Modified Jacobian for the dimensionless functional

• The dimensional Jacobian is based on the dimensional
equations
– Already implemented in NIMROD

• Leverage functionals and matrices already implemented in
NIMROD

• Wrap PETSc routines with these scalings

Existing NIMROD infrastructure can
be reused in performing the PETSc

calls



Goal: create “automatic
preconditioner” based on any

high-order FE mesh
• Using this low-order finite element space as a

preconditioner requires a rediscretization of the problem on
the mesh constructed from high-order nodes (LO-DS).

• We are building an approach through PETSc where this
idea can be used in an automatic sense by just passing off
the element stiffness matrices (LO-LS) and solving a least-
squares problem.

• We ensure the sparse matrix constructed from the least-
squares problem approximates the smoother eigenvectors
from the element stiffness matrices and gets exactly the
nullspace.

• In the next few months we will be adding to NIMROD code
that constructs the element stiffness matrices that allows us
to test out this idea in a NIMROD setting.


