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How can one model neoclassical tearing modes? 

Introduction 3 



Neoclassical tearing mode modeling 
4 

 NTM stability place a severe limit on maximum β 

 Most common cause of disruptions on JET1 

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs 
 Especially important for ITER operation, in which very 

few disruptions can be tolerated2 

 NTMs incorporate a lot of physics  
 Cause:  Neoclassical kinetic theory (bootstrap current) 

 Effect:  MHD destabilization (island growth) 

 Requires a hybrid model 

 1 P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011) 
2 T.C. Hender, et al., Nucl. Fusion 47, S128-S202 (2007) 



Framework for hybrid solver 
5 

 Use existing MHD time-evolution code (e.g., M3D-C1, 
NIMROD) 

 Desirable traits for neoclassical drift–kinetic equation 
(DKE) solver 
 Three-dimensional toroidal geometry 

 Study nonaxisymmetric geometries with magnetic islands 

 Full Fokker-Planck-Landau collision operator 
 Use of model collision operators can lead to errors of 5%-10%3 

 Continuum model 
 Good convergence properties, especially for long times 

 Straight-forward coupling to MHD solvers 

 Potentially more computationally efficient than PIC 

3 E.A. Belli and J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012) 



Ramos Form of DKE 
6 

 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides 
analytic framework for a neoclassical solver 
appropriate for core plasma instability simulations 

 DKE evolves          , difference between full distribution 
function and shifting Maxwellian (similar to delta-f) 

 Small parameters for high-temperature fusion plasmas   

 

 Important properties:   
 Maintained to collisional inverse timescale of 

 Conventional neoclassical banana regime for electrons  

 Velocity referenced to each species’ macroscopic flow 

 Perturbed distribution carries no density, parallel 
momentum, or kinetic energy 



Axisymmetric case 

Analytic & Numerical Formulation 7 



Overview of next step 
8 

 NIES code (previously presented at 6/12 & 10/12 
CEMM meetings) successfully solved axisymmetric 
Ramos DKEs to zeroth order in collisionality 

 We’ll retain axisymmetric geometry for now 

 Want to solve the full Ramos DKE without further 
expansions in collisionality 
 Extends result to first-order in collisionality 

 Allows solution to vary poloidally 

 Solves for trapped and passing particles’ distribution 
functions 

 Will couple directly to reduced MHD equations 



MHD equations 
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 Besides Maxwell’s Eqs., we have: 

 Ohm’s Law 

 Momentum evolution 

 Pressure evolution 

 Use the 2-field representation to start (no pressure eq.)  

 



Required Moments for Closure 
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 Pressure Anisotropy 

 Parallel Heat Flux 

 Collisional Friction Force 

 Collisional Heat Source 

 All of these moments are given by the solution to appropriate DKEs 

 We’ll only consider the electron DKE here 

 



Reduced Electron DKE 
11 

 Assume flat, stationary temperature & density profiles 
with equal ion & electron temperatures 

 Work in axisymmetric 4D phase space 
     denotes a flux surface,     is the poloidal angle 

     is the total velocity,                    is cosine of the pitch angle 

 Electron DKE simplifies to 

 

     

    where 

 

  



Time evolution of Electron DKE 
12 

 First line consists of convective flow and homogeneous 
collision operator and is treated implicitly 

 Second and third lines consist of moments of the 
solution and are treated explicitly 
 No stability constraints expected since these are integrals 

over the solution. 

 Last line consists of the inhomogeneous drive terms 



Expansions in DKE 
13 

 Velocity 

 Cubic B-spline finite elements for 

 Pitch angle 

 Legendre polynomials in  

 May try finite elements as well 

 Configuration Space 

 Fourier modes in 

     is just a parameter (each flux surface treated locally) 

 May try finite elements in     or in  



DKE Solution Method 
14 

 Poisson equations for Rosenbluth potentials solved 
simultaneously with DKE at each time step 

 Galerkin method with cubic B-spline finite elements creates a 
block septadiagonal matrix in 
 
 
 
 
 
 

 Each block contains information on     and θ derivatives 
 Solve as a sparse banded matrix using ScaLAPACK 

 May transition to SuperLU at some point to take advantage of 
sparsity within blocks 



Timescales 

 Difficult to consider DKE time dependently 
 In DKE, collision time 10-103  longer than convective time 
 MHD resistive time 106-108 longer than collision time 

 Reasonable to expect the distribution function to evolve 
to steady state within an MHD time step 
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Proposed solution iteration 
16 

Solve DKE(s) to 
steady state to get 

distribution function 
for given equilibrium 

Take moments to get 
necessary closures 
for MHD equations  

(e.g., friction force) 

Evolve MHD 
equations to get new 

equilibrium using 
(modified) M3D-C1 



Current Progress 17 



Status of code 
18 

 All terms discussed have been implemented 

 Can reproduce known result with good agreement 

 Currently debugging some computational issues 

 Convergence with number of velocity finite elements 

 Spurious density, parallel momentum, and kinetic 
energy formation 

 



Adiabatic Solution Test 
19 

 A reduced version of the steady-state electron DKE:  

  
has a known particular solution: 

 

 

 Our computed  
steady-state  
solution to  
this equation 

 



Convergence to Adiabatic Solution? 
20 

 Level of random error can be 
reduced with smaller time 
step or larger grid spacing 

 Possible stability issue? 
 

 Possible boundary condition 
problems 

 Eq. ill-defined at origin? 

 Cause of oscillations? 
 



Full DKE Solutions 
21 

 Don’t observe same issue in steady-state convergence (except at 
small magnitude ~10-11); many time steps for convergence though 

 Currently working on numerical convergence 



Conservation Laws 
22 

 Define: 

 

 

 One can show that the analytic electron DKE should 
enforce several conservation laws 

 

 

 Expect numerical equations to deviate from these, 
but spurious values should converge as solution 
converges 



Using Conservation Laws to Debug 
23 

 Producing spurious momentum of ~1% of mean flow 
 
 
 
 
 
 
 
 

 Derivation of these laws show which terms balance, e.g., 
 Convective terms balance parallel heat flux to produce no 
 No other terms should contribute to 
 Preliminary tests show that this balance is not converging, though 

spurious kinetic energy is small (~10-6 of electron temperature) 



Calculating Neoclassical Conductivity 
24 

 Despite these problems, it would be useful to 
calculate the neoclassical conductivity given by our 
computed solution 

 Parallel Ohm’s Law gives 

 

 Thus, the neoclassical conductivity is 

 

 

 

 Should be done soon (perhaps by my poster Monday) 



Future work & Conclusion 25 



Test problem 
26 

 Diffusion of current into a toroidal plasma due to a 
loop voltage at its edge 

 Current evolves self-consistently with equilibrium 

 Should observe neoclassical conductivity reduction 

 Trapped particles carry no net current 

 Can benchmark to theoretical and numerical results 



Extensions to axisymmetric code 
27 

 When current code is working, we will 

 Allow separate ion and electron temperatures 

 Relax constraints on density and temperature profiles 

 Will have to solve separate, but similar, ion DKE 

 Will allow for simulations of the inductive 
formation of the bootstrap current 

 Use full six-field MHD model with M3D-C1 to self-
consistently evolve pressure as well 

 



Summary 
28 

 The operation of ITER and other future MCF 
experiments requires predictive capabilities for core 
plasma instabilities (e.g., Sawtooths, NTMs) 

 To date, no neoclassical code exists that is well-suited 
for such simulations (work by E. Held excepted) 

 We are creating such a code based on the Ramos 
drift-kinetic formulation 

 Axisymmetric hybrid code currently being debugged 

 Hope to start work on nonaxisymmetric code in late 2013 

 My poster:  Monday, Session II,  #24 
 


