
Comparison of Kinetic and Extended 
MHD Models for the Ion 

Temperature Gradient Instability in 
Slab Geometry	



D. D. Schnack	


University of Wisconsin – Madison	



Jianhua Cheng, S. E. Parker	


University of Colorado – Boulder	



D. C. Barnes	


TriAlpha Energy, Inc.	





Un-indicted Co-Conspirators	



•  Ping Zhu	


•  Chris Hegna	


•  Eric Held	


•  Jake King	


•  Scott Kruger	


•  Carl Sovinec	





Goals	



•  Verify the NIMROD code for the ITG 
instability	


– Are the extended MHD equations being solved 

correctly?	


•  Validate the extended MHD model for the ITG	


– When can extended MHD be used as a physical 

model for the ITG?	


– Quantify the differences between extended MHD 

and fully kinetic model	





Ion Temperature Gradient 
Instability	



•  Parallel sound wave destabilized by interaction with a perpendicular drift 
wave in the presence of an ion temperature gradient	


–  L is gradient scale length	


–  Perturbed perp. drift motions convect heat via Vx dTi0/dx	


–  Can amplify temperature perturbation in sound wave if phase and frequency are 

right	


•  Requires FLR/two-fluid effects for instability	



–  Stable in ideal and resistive MHD	


–  Threshold in ρi/L or kyρi for instability	


–  Differs from g-mode, which is MHD unstable and is stabilized by FLR effects	



•  Good test for extended MHD model	


–  How far can the model be pushed into the kinetic regime?	





Approach	


•  Solve local kinetic and fluid dispersion relations for 

complex eigenvalue	


•  Solve extended MHD model with NIMROD code for 

complex eigenvalue and global eigenfunction	


•  Solve Vlasov + field equations with hybrid kinetic δf 

code (Cheng, et. al.) for complex eigenvalue and 
global eigenfunction	



•  Compare all results for a range of ky ρi and ρi/L	





Equilibrium	


•  Slab (x, y, z) geometry	


–  Quasi-neutral   ni0 = ne0 = n0	



–  Ti0(x),   B(x) = B0(x) ez, n0 = const, Te0 = const.	


–  z is parallel, y is perpendicular, no shear	



•  Species force balance:	


–  Specify P, determine B from MHD force balance	



•  E0x determines frame of reference	


–  E0x = 0 for all calculations here	


–  Ion drift velocity explicitly included in equilibrium	



E0 +Vs0 × B0 +
1
n0qs

∇Ps = 0



Local Kinetic Dispersion Relation	


•  No external forces or field line curvature; electrostatic	


•  Perturbations: 	


–  Ignore x-dependence: local approximation	



•  Low frequency: |ω| << |Ωe,i|	



•  Fluid limit:	
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Local Extended MHD Dispersion 
Relation	



•  XMHD mathematically equivalent to “two-fluid” model – has 
same dispersion relation	



•  FLR effects captured through Braginskii closures (kyρi << 1):	



•  Assume complete GV cancellations+electrostatic, kz/ky << 1:	



•  Same as fluid limit of kinetic equation!	


–  Similar equation if GV cancellations are “incomplete”	
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Cubic Dispersion Relation	



•  High frequency, or dTi/dx small:	


–  Cubic ~ Linear => Parallel sound waves:	



•  Low frequency, small dTi/dx :	


–  Linear ~ Constant => Drift wave:	



•  High frequency, Large dTi/dx :	


–  Cubic ~ Constant => Instability:	



•  Interaction between sound and drift waves lead to instability	


•  Electromagnetic dispersion relation is quintic – 2 new shear 

Alfven waves, same low frequency behavior	
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Behavior of Low Frequency Roots 
in Fluid Limit	





Fluid Solution Depends on Single 
Non-dimensional Parameter 	
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Wave-Particle Interaction Effects	


•  Kinetic model includes 

wave-particle interaction 
effects (e.g., Landau 
damping)	



•  Not captured by extended 
MHD model	



•  Effects minimized when 
ωr/(kz Vthi) >> 1 (few 
particles resonant with 
wave)	


–  Also need kyρi << 1	

  For k⊥ρi ~ 0.2,  resonant fraction ~ e− ωr /(kVthi )( )2 ~ e−(1.7)2

= 0.055



Equilibrium for Global 
Calculations	
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Walls are “far away”	


Used for both XMHD and kinetic	


 calculations	



ηi peaks at x < 0	





Local Fluid Growth Rate vs. x	



Maximum local growth rate biased toward x < 0	





Comparison of NIMROD and 
Local Fluid Growth Rates	





Growth Rate is a Function of Te/Ti	



When Te = 0 the drift wave does not propagate	





Comparison of Local Kinetic and 
Fluid Growth Rates with NIMROD 

Results	



NIMROD and local fluid in fair	


agreement for kyρi < 0.2	



NIMROD,  local fluid, and local kinetic 	


agree on marginal point	



Local kinetic stabilizes at kyρi ~ 1	



Global hybrid kinetic calculation	


impractical for this value of ρi/L	



 

ρi / L = 4 ×10−4

1 / L = 3 / m
k = 0.1 m

Ωi = 1.9 ×108  / sec
β0 = βe + βi = 0.05
Te /Ti = 4



Comparison of Local and Global 
Kinetic and Fluid Results	



Larger values of ρi/L allow global kinetic calculation	



kyρi = 0.2 for all results	





Comparison of Kinetic and Fluid 
Eigenfunctions	



Max. ηi	



Max. local	


fluid growth rate	



x = 0	





Verification of NIMROD	


•  When ρi/L << 1, NIMROD growth rate in good agreement with local fluid 

theory as a function of 1/L for fixed kyρi = 0.14	


–  Difference at marginal point	



•  For fixed ρi/L = 4 ✕10-4, NIMROD growth rate in good agreement with 
local fluid theory as a function of kyρi	


–  Agreement on marginal point, kyρi = 0.025	


–  Excellent agreement for kyρi < 0.1	


–  Good agreement for kyρi < 0.2	


–  Divergence due to spatial dependence of equilibrium	



•  Accurate and correct solutions of extended MHD equations for this 
parameter range	



NIMROD is verified for the ITG	


Hybrid Kinetic Model also Verified	





Validation of Extended MHD 
Model in NIMROD	



•  Direct comparison with more physically accurate kinetic 
models (both local and global)	


–  For ρi/L < 10-3, extended MHD has same marginal point in kyρi as local 

kinetic solution	


–  Good agreement for kyρi < 0.05	


–  Begin significant divergence for kyρi > 0.2	



•  Wave particle interactions	


–  For kyρi = 0.2, agreement on marginal point in ρi/L (= 0.013), but 

significant disagreement for larger ρi/L	


•  Wave particle interactions	



–  Global extended MHD and hybrid kinetic eigenfunctions have similar 
character for L/ρi = 30 and 20	



Extended MHD is reliable physical model for ρi/L < 10-3 and kyρi 
< 0.2, and is validated in this parameter range	





Implications for Nonlinear 
Extended MHD Computations	



•  ITG growth rate increases as (kyρi)1/3	


–  g-mode (interchange) stabilized by large 

kyρi	


•  Increasing resolution for nonlinear 

computations introduces modes with 
larger growth rates	


–  Impossible to converge nonlinear 

spectrum?	


•  Kinetic model stabilizes for kyρi ~ 1	



–  Suggests adding “hyper-dissipation” ~ 
(kyρi)4	



–  Control unphysical large kyρi modes with 
little effect for kyρi < 0.2	



Integrated model of 
MHD-scale dynamics 
in presence of ITG 
turbulence?	





Future Directions	


•  Can we improve the closures in extended MHD?	



–  Particle ions as part of bulk species?	


–  Eric Held’s kinetic closures (on grid in phase space)?	


–  Can we go further into kinetic regime?	



•  Nonlinear ITG	


–  Slab geometry	


–  Hyper-dissipation	



•  Thermal conductivity?	



•  ITG turbulence?	


–  Effective transport?	


–  Annulus calculations?	



•  Global toroidal simulations	


–  Sawtooth + core ITG turbulence?	


–  Can all this be captured in a single `”integrated” fluid calculation?	




