Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

D. D. Schnack

University of Wisconsin – Madison

Jianhua Cheng, S. E. Parker

University of Colorado – Boulder

D.C.Barnes

TriAlpha Energy, Inc.

Un-indicted Co-Conspirators

- Ping Zhu
- Chris Hegna
- Eric Held
- Jake King
- Scott Kruger
- Carl Sovinec

Goals

- Verify the NIMROD code for the ITG instability
 - Are the extended MHD equations being solved correctly?
- Validate the extended MHD model for the ITG
 - When can extended MHD be used as a physical model for the ITG?
 - Quantify the differences between extended MHD and fully kinetic model

Ion Temperature Gradient Instability

- *Parallel sound wave* destabilized by interaction with a *perpendicular drift wave* in the presence of an *ion temperature gradient*
 - L is gradient scale length
 - Perturbed perp. drift motions convect heat via $V_x dT_{i0}/dx$
 - Can amplify temperature perturbation in sound wave if phase and frequency are right
- Requires FLR/two-fluid effects for instability
 - Stable in ideal and resistive MHD
 - Threshold in ϱ_i/L or $k_v \varrho_i$ for instability
 - Differs from g-mode, which is MHD unstable and is stabilized by FLR effects
- Good test for extended MHD model
 - How far can the model be pushed into the kinetic regime?

Approach

- Solve *local* kinetic and fluid dispersion relations for complex eigenvalue
- Solve extended MHD model with NIMROD code for complex eigenvalue and *global* eigenfunction
- Solve Vlasov + field equations with hybrid kinetic δf code (Cheng, et. al.) for complex eigenvalue and *global* eigenfunction
- Compare all results for a range of $k_v \varrho_i$ and ϱ_i/L

Equilibrium

- Slab (x, y, z) geometry
 - Quasi-neutral $n_{i0} = n_{e0} = n_0$
 - $T_{i0}(\mathbf{x}), \ \mathbf{B}(x) = B_0(x) \mathbf{e}_z, n_0 = \text{const}, T_{e0} = \text{const}.$
 - -z is parallel, y is perpendicular, no shear
- Species force balance: $\mathbf{E}_0 + \mathbf{V}_{s0} \times \mathbf{B}_0 + \frac{1}{n a} \nabla P_s = 0$
 - Specify *P*, determine *B* from MHD force balance
- E_{0x} determines frame of reference
 - $-E_{0x} = 0$ for all calculations here
 - Ion drift velocity explicitly included in equilibrium

Local Kinetic Dispersion Relation

- No external forces or field line curvature; electrostatic
- Perturbations: $f = \tilde{f}e^{i(k_y y + k_z z \omega t)}$

- Ignore *x*-dependence: *local approximation*

- Low frequency: $|\omega| \ll |\Omega_{e,i}|$ $1 + \sum_{s} \frac{1}{(k\lambda_{Ds})^{2}} \left\{ 1 + \frac{\omega - \omega'_{ds}}{\omega} \left[W\left(\frac{\omega}{|k_{z}|V_{ths}}\right) - 1 \right] I_{0}(\xi_{s}) e^{-\xi_{s}} \right\} = 0$ $\xi_{s} = (k_{y}\rho_{i})^{2} \qquad \omega'_{ds} = \frac{T_{s}k_{y}}{q_{s}B} \frac{dT_{s}}{dx} \frac{\partial}{\partial T_{s}} \qquad W(\zeta) = (\zeta/\sqrt{2})Z(\zeta/\sqrt{2}) + 1$
- Fluid limit: $(\omega^2 \omega_s^2)\omega + \omega_{se}^2\omega_{Ti}^* = 0$ $\omega_{se}^2 = k_z^2 T_e / M$ $\omega_s^2 = \omega_{se}^2 + k_z^2 (5/3) T_i / M$ $\omega_{Ti}^* = \frac{k_y}{eB} \frac{dT_i}{dx}$

Local Extended MHD Dispersion Relation

- XMHD *mathematically equivalent* to "two-fluid" model has same dispersion relation
- FLR effects captured through Braginskii closures ($k_v \varrho_i \ll 1$):

$$\Pi_{i}^{gv} = \frac{\eta_{3}}{2} \Big[\hat{\mathbf{b}} \times \mathbf{W} \cdot \big(\mathbf{I} + 3\hat{\mathbf{b}}\hat{\mathbf{b}}\big) + \text{transpose} \Big], \quad \eta_{3} = \frac{P_{i}}{2B}$$
$$W_{i,j} = \frac{\partial V_{j}}{\partial x_{i}} + \frac{\partial V_{j}}{\partial x_{i}} - \frac{2}{3}\delta_{i,j}\nabla \cdot \mathbf{V} \qquad \mathbf{q}_{i}^{gv} = \kappa_{i}^{gv}\hat{\mathbf{b}} \times \nabla T_{i} \quad , \quad \kappa_{i}^{gv} = \frac{5}{2}\frac{P_{i}}{B}$$

• Assume complete GV cancellations+electrostatic, $k_z/k_y \ll 1$:

$$\left(\omega^2-\omega_s^2\right)\omega+\omega_{se}^2\omega_{Ti}^*=0$$

• Same as fluid limit of kinetic equation!

⁻ Similar equation if GV cancellations are "incomplete"

Cubic Dispersion Relation

ω^3	$-\omega_s^2\omega$ +	$-\omega_{se}^2\omega_{Ti}^*=0$	0
Cubic	Linear	Constant	

• High frequency, or dT_i/dx small:

- Cubic ~ Linear => Parallel sound waves: $\omega^2 = \omega_s^2$

• Low frequency, small dT_i/dx :

•

– Linear ~ Constant => Drift wave:

High frequency, Large
$$dT_i/dx$$
:

- Cubic ~ Constant => Instability:

$$\omega = \left(\omega_{se}^2 \omega_{Ti}^*\right)^{1/3} e^{2\pi i l/3}, \quad l = 0, 1, 2 \quad \gamma \sim L^{-1/3}$$

- Interaction between sound and drift waves lead to instability
- Electromagnetic dispersion relation is quintic 2 new shear Alfven waves, same low frequency behavior

$$\omega = -\frac{\omega_{se}^2 \omega_{Ti}^*}{\omega_s^2} \sim \frac{dT_i}{dx}$$

Behavior of Low Frequency Roots in Fluid Limit

Fluid Solution Depends on Single Non-dimensional Parameter

$$g = \frac{27}{4} \frac{\beta_e^2 \beta_i}{\left(\beta_e + \frac{5}{3}\beta_i\right)^3} \left(\frac{k_\perp}{k_\parallel}\right)^2 \left(\frac{\rho_i}{L}\right)^2 , \qquad g > 1 \text{ for instability}$$

Growth Rate:

Wave-Particle Interaction Effects

- Kinetic model includes wave-particle interaction effects (e.g., Landau damping)
- Not captured by extended MHD model
- Effects minimized when $\omega_r/(k_z V_{thi}) >> 1$ (few particles resonant with wave)
 - Also need $k_y \varrho_i \ll 1$

Equilibrium for Global Calculations

$$T_i(x) = T_{i0} \left[1 + 0.9 \tanh\left(\frac{x}{L}\right) \right]$$

Walls are "far away"

Used for both XMHD and kinetic calculations

Local Fluid Growth Rate vs. x

Maximum local growth rate biased toward x < 0

Comparison of NIMROD and Local Fluid Growth Rates

Growth Rate is a Function of T_e/T_i

When $T_e = 0$ the drift wave does not propagate

Comparison of Local Kinetic and Fluid Growth Rates with NIMROD $\rho_i/L=4\times10^{-4}$ Results

1/L = 3/m $k_{\parallel} = 0.1 m$ $\Omega_{i} = 1.9 \times 10^{8} / \text{sec}$ $\beta_{0} = \beta_{e} + \beta_{i} = 0.05$ $T_{e} / T_{i} = 4$

NIMROD and local fluid in fair agreement for $k_y \varrho_i < 0.2$

NIMROD, local fluid, and local kinetic agree on marginal point

Local kinetic stabilizes at $k_y \rho_i \sim 1$

Global hybrid kinetic calculation impractical for this value of Q_i/L

Comparison of Local and Global Kinetic and Fluid Results

Larger values of ϱ_i/L allow global kinetic calculation

 $k_v q_i = 0.2$ for all results

Comparison of Kinetic and Fluid Eigenfunctions

Verification of NIMROD

- When $\varrho_i/L \ll 1$, NIMROD growth rate in good agreement with local fluid theory as a function of 1/L for fixed $k_v \varrho_i = 0.14$
 - Difference at marginal point
- For fixed $\varrho_i/L = 4 \times 10^{-4}$, NIMROD growth rate in good agreement with local fluid theory as a function of $k_v \varrho_i$
 - Agreement on marginal point, $k_v \rho_i = 0.025$
 - Excellent agreement for $k_y \rho_i < 0.1$
 - Good agreement for $k_v \varrho_i < 0.2$
 - Divergence due to spatial dependence of equilibrium
- Accurate and correct solutions of extended MHD equations for this parameter range

NIMROD is verified for the ITG Hybrid Kinetic Model also Verified

Validation of Extended MHD Model in NIMROD

- Direct comparison with more physically accurate kinetic models (both local and global)
 - For $\varrho_i/L < 10^{-3}$, extended MHD has same marginal point in $k_y \varrho_i$ as local kinetic solution
 - Good agreement for $k_v \rho_i < 0.05$
 - Begin significant divergence for $k_y \varrho_i > 0.2$
 - Wave particle interactions
 - For $k_y \varrho_i = 0.2$, agreement on marginal point in ϱ_i/L (= 0.013), but significant disagreement for larger ϱ_i/L
 - Wave particle interactions
 - Global extended MHD and hybrid kinetic eigenfunctions have similar character for $L/q_i = 30$ and 20

Extended MHD is reliable physical model for $\varrho_i/L < 10^{-3}$ and $k_y \varrho_i < 0.2$, and is validated in this parameter range

Implications for Nonlinear Extended MHD Computations

Integrated model of MHD-scale dynamics in presence of ITG turbulence?

- ITG growth rate increases as $(k_y \varrho_i)^{1/3}$ - g-mode (interchange) stabilized by large $k_y \varrho_i$
- Increasing resolution for nonlinear computations introduces modes with larger growth rates
 - Impossible to converge nonlinear spectrum?
- Kinetic model stabilizes for $k_y q_i \sim 1$
 - Suggests adding "hyper-dissipation" ~ $(k_y Q_i)^4$
 - Control unphysical large $k_y \varrho_i$ modes with little effect for $k_y \varrho_i < 0.2$

Future Directions

- Can we improve the closures in extended MHD?
 - Particle ions as part of bulk species?
 - Eric Held's kinetic closures (on grid in phase space)?
 - Can we go further into kinetic regime?
- Nonlinear ITG
 - Slab geometry
 - Hyper-dissipation
 - Thermal conductivity?
- ITG turbulence?
 - Effective transport?
 - Annulus calculations?
- Global toroidal simulations
 - Sawtooth + core ITG turbulence?
 - Can all this be captured in a single `"integrated" fluid calculation?