Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

D. D. Schnack

University of Wisconsin – Madison

Jianhua Cheng, S. E. Parker

University of Colorado – Boulder

D. C. Barnes

TriAlpha Energy, Inc.

Un-indicted Co-Conspirators

- Ping Zhu
- Chris Hegna
- Eric Held
- Jake King
- Scott Kruger
- Carl Sovinec

Goals

- Verify the NIMROD code for the ITG instability
	- Are the extended MHD equations being solved correctly?
- Validate the extended MHD model for the ITG
	- When can extended MHD be used as a physical model for the ITG?
	- Quantify the differences between extended MHD and fully kinetic model

Ion Temperature Gradient Instability

- *Parallel sound wave* destabilized by interaction with a *perpendicular drift wave* in the presence of an *ion temperature gradient*
	- *L* is gradient scale length
	- Perturbed perp. drift motions convect heat via $V_x dT_{i0}/dx$
	- Can amplify temperature perturbation in sound wave if phase and frequency are right
- Requires FLR/two-fluid effects for instability
	- Stable in ideal and resistive MHD
	- Threshold in *ρⁱ* /*L* or *kyρⁱ* for instability
	- Differs from *g*-mode, which is MHD unstable and is stabilized by FLR effects
- Good test for extended MHD model
	- How far can the model be pushed into the kinetic regime?

Approach

- Solve *local* kinetic and fluid dispersion relations for complex eigenvalue
- Solve extended MHD model with NIMROD code for complex eigenvalue and *global* eigenfunction
- Solve Vlasov + field equations with hybrid kinetic *δf* code (Cheng, et. al.) for complex eigenvalue and *global* eigenfunction
- Compare all results for a range of $k_y \rho_i$ and ρ_i/L

Equilibrium

- Slab (*x*, *y*, *z*) geometry
	- $-$ Quasi-neutral $n_{i0} = n_{e0} = n_0$
	- $-T_{i0}(x)$, $\mathbf{B}(x) = B_0(x) \mathbf{e}_z$, $n_0 = \text{const}$, $T_{e0} = \text{const}$.
	- *z* is parallel, *y* is perpendicular, no shear
- Species force balance: $\mathbf{E}_0 + \mathbf{V}_{s0} \times \mathbf{B}_0 + \mathbf{V}_{s0} \times \mathbf{B}_0$ 1 n_0q_s $\nabla P_{s}=0$
	- $-$ Specify *P*, determine *B* from MHD force balance
- E_{0x} determines frame of reference
	- $-E_{0x} = 0$ for all calculations here
	- Ion drift velocity explicitly included in equilibrium

Local Kinetic Dispersion Relation

- No external forces or field line curvature; electrostatic
- Perturbations: $f = \tilde{f}e^{i(k_y y + k_z z \omega t)}$

– Ignore *x*-dependence: *local approximation*

- Low frequency: $|\omega| \ll |\Omega_{e,i}|$ $\omega'_{ds} = \frac{\sum_{s=0}^{s} u_s}{a} \frac{d}{dx} \frac{\partial}{\partial x}$ $W(\zeta) = (\zeta/\sqrt{2})Z(\zeta/\sqrt{2})+1$ $T_{s}k_{y}$ $q_{s}B$ dT_{s} *dx* ∂ ∂*Ts* 1+ 1 $\left(k\lambda_{Ds}\right)$ $\frac{1}{2}$ {1+ $\omega-\omega'_{ds}$ ω $W\left[\frac{\omega}{\sqrt{1+\frac{1}{2}}}\right]$ $k_z\big|V_{\rm \scriptscriptstyle ths}$ $\sqrt{}$ ⎝ $\overline{}$ ⎞ ⎠ $\vert -1$ L \lfloor $\overline{}$ \lfloor $\overline{}$ $\overline{}$ ⎥ $\overline{}$ $I_{0}\big(\mathbf{\xi}_{s}\big)e^{-\mathbf{\xi}_{s}}$ \vert ⎨ \vert $\overline{\mathcal{L}}$ \vert $\left\{ \right.$ $\overline{\mathcal{L}}$ \int $= 0$ *s* ∑ $\xi_s = (k_y \rho_i)$ 2
- Fluid limit: $(\omega^2 \omega_s^2)\omega + \omega_{se}^2$ $\bm{\omega}_{\scriptscriptstyle Ti}$ $^{*}_{Ti}=0$

$$
\omega_{se}^2 = k_z^2 T_e / M \qquad \omega_s^2 = \omega_{se}^2 + k_z^2 (5/3) T_i / M \qquad \omega_{Ti}^* = \frac{\kappa_y}{eB} \frac{dI_i}{dx}
$$

 \mathbf{z}

dTi

Local Extended MHD Dispersion Relation

- XMHD *mathematically equivalent* to "two-fluid" model has same dispersion relation
- FLR effects captured through Braginskii closures $(k_y \varrho_i \ll 1)$:

$$
\Pi_{i}^{\text{gv}} = \frac{\eta_{3}}{2} \left[\hat{\mathbf{b}} \times \mathbf{W} \cdot \left(\mathbf{I} + 3 \hat{\mathbf{b}} \hat{\mathbf{b}} \right) + \text{transpose} \right], \quad \eta_{3} = \frac{P_{i}}{2B}
$$

$$
\mathbf{W}_{i,j} = \frac{\partial V_{j}}{\partial x_{i}} + \frac{\partial V_{j}}{\partial x_{i}} - \frac{2}{3} \delta_{i,j} \nabla \cdot \mathbf{V} \qquad \mathbf{q}_{i}^{gv} = \kappa_{i}^{gv} \hat{\mathbf{b}} \times \nabla T_{i} , \qquad \kappa_{i}^{gv} = \frac{5}{2} \frac{P_{i}}{B}
$$

• Assume complete GV cancellations+electrostatic, $k_z/k_v \ll 1$:

$$
(\omega^2-\omega_s^2)\omega+\omega_{se}^2\omega_{Ti}^*=0
$$

• Same as fluid limit of kinetic equation!

[–] Similar equation if GV cancellations are "incomplete"

Cubic Dispersion Relation

• High frequency, or dT_i/dx small:

- Cubic ~ Linear => Parallel sound waves: $\omega^2 = \omega_s^2$

• Low frequency, small dT_i/dx :

$$
-\qquad\text{Linear} \sim \text{Constant} \Longrightarrow \text{Drift wave:}
$$

High frequency, Large
$$
dT_i/dx
$$
:

$$
\begin{aligned}\n&\text{-} \quad \text{Cubic} \sim \text{Constant} \Longrightarrow \text{Instability:} \\
&\omega = \left(\omega_{se}^2 \omega_{Ti}^*\right)^{1/3} e^{2\pi i l/3}, \quad l = 0, 1, 2 \quad \gamma \sim L^{-1/3}\n\end{aligned}
$$

- Interaction between sound and drift waves lead to instability
- Electromagnetic dispersion relation is quintic -2 new shear Alfven waves, same low frequency behavior

$$
\omega = -\frac{\omega_{se}^2 \omega_{Ti}^*}{\omega_s^2} \sim \frac{dT_i}{dx}
$$

Behavior of Low Frequency Roots in Fluid Limit

Fluid Solution Depends on Single Non-dimensional Parameter

$$
g = \frac{27}{4} \frac{\beta_e^2 \beta_i}{\left(\beta_e + \frac{5}{3} \beta_i\right)^3} \left(\frac{k_\perp}{k_\parallel}\right)^2 \left(\frac{\rho_i}{L}\right)^2 , \qquad g > 1 \text{ for instability}
$$

Growth Rate:

Wave-Particle Interaction Effects

- Kinetic model includes wave-particle interaction effects (e.g., Landau damping)
- Not captured by extended MHD model
- Effects minimized when $\omega_r/(k_z V_{thi}) >> 1$ (few particles resonant with wave)
	- $-$ Also need $k_{\nu}Q_i \ll 1$

Equilibrium for Global Calculations

$$
T_i(x) = T_{i0} \left[1 + 0.9 \tanh\left(\frac{x}{L}\right) \right]
$$

Walls are "far away" Used for both XMHD and kinetic calculations

Local Fluid Growth Rate vs. *x*

Maximum local growth rate biased toward $x < 0$

Comparison of NIMROD and Local Fluid Growth Rates

Growth Rate is a Function of T_e/T_i

When $T_e = 0$ the drift wave does not propagate

Comparison of Local Kinetic and Fluid Growth Rates with NIMROD Results ρ_i / $L = 4 \times 10^{-4}$

 $1/L = 3/m$ $k_{\parallel} = 0.1 \text{ m}$ $\Omega_{i} = 1.9 \times 10^{8}$ / sec $\beta_{\text{o}} = \beta_{\text{e}} + \beta_{\text{i}} = 0.05$ $T_e / T_i = 4$

NIMROD and local fluid in fair agreement for $k_{y}Q_i < 0.2$

NIMROD, local fluid, and local kinetic agree on marginal point

Local kinetic stabilizes at $k_{y}Q_i \sim 1$

Global hybrid kinetic calculation impractical for this value of *ρⁱ* /*L*

Comparison of Local and Global Kinetic and Fluid Results

Larger values of *ρⁱ* /*L* allow global kinetic calculation

 $k_{y}\rho_{i}$ = 0.2 for all results

Comparison of Kinetic and Fluid Eigenfunctions

Verification of NIMROD

- When $\rho_i/L \ll 1$, NIMROD growth rate in good agreement with local fluid theory as a function of $1/L$ for fixed $k_y \rho_i = 0.14$
	- Difference at marginal point
- For fixed $\varrho_i/L = 4 \times 10^{-4}$, NIMROD growth rate in good agreement with local fluid theory as a function of $k_{y}Q_i$
	- $-$ Agreement on marginal point, $k_y \rho_i = 0.025$
	- $-$ Excellent agreement for $k_y \rho_i < 0.1$
	- Good agreement for $k_y \rho_i < 0.2$
	- Divergence due to spatial dependence of equilibrium
- Accurate and correct solutions of extended MHD equations for this parameter range

NIMROD is verified for the ITG Hybrid Kinetic Model also Verified

Validation of Extended MHD Model in NIMROD

- Direct comparison with more physically accurate kinetic models (both local and global)
	- $-$ For $\varrho_i/L < 10^{-3}$, extended MHD has same marginal point in $k_y \varrho_i$ as local kinetic solution
	- $-$ Good agreement for $k_y \rho_i < 0.05$
	- $-$ Begin significant divergence for $k_y \rho_i > 0.2$
		- Wave particle interactions
	- $-$ For $k_y \rho_i = 0.2$, agreement on marginal point in ρ_i / L (= 0.013), but significant disagreement for larger *ρⁱ* /*L*
		- Wave particle interactions
	- Global extended MHD and hybrid kinetic eigenfunctions have similar character for $L/Q_i = 30$ and 20

 $\emph{Extended MHD}$ is reliable physical model for $\emph{Q}_{i}/L < 10^{\text{-3}}$ and $\emph{k}_{\rm y}\emph{Q}_{i}$ *<* 0.2*, and is validated in this parameter range*

Implications for Nonlinear Extended MHD Computations

Integrated model of MHD-scale dynamics in presence of ITG turbulence?

- ITG growth rate increases as $(k_y \varrho_i)^{1/3}$ – *g*-mode (interchange) stabilized by large $k_{\rm v}$ Q_i
	- Increasing resolution for nonlinear computations introduces modes with larger growth rates
		- Impossible to converge nonlinear spectrum?
- Kinetic model stabilizes for $k_y \rho_i \sim 1$
	- $-$ Suggests adding "hyper-dissipation" \sim $(k_yQ_i)^4$
	- $-$ Control unphysical large $k_y \rho_i$ modes with little effect for $k_{y}Q_{i} < 0.2$

Future Directions

- Can we improve the closures in extended MHD?
	- Particle ions as part of bulk species?
	- Eric Held's kinetic closures (on grid in phase space)?
	- Can we go further into kinetic regime?
- Nonlinear ITG
	- Slab geometry
	- Hyper-dissipation
		- Thermal conductivity?
- ITG turbulence?
	- Effective transport?
	- Annulus calculations?
- Global toroidal simulations
	- Sawtooth + core ITG turbulence?
	- Can all this be captured in a single `"integrated" fluid calculation?