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Introduction

It was observed that disruptions were accompanied by toroidal rotation [Gerhardt
2012,Granetz 1996, Gerasimov 2010].

There is a concern that this rotation may occur during ITER disruptions, causing a
resonance between rotating toroidal perturbations and the resonant frequencies of
the vacuum vessel.

In an MHD model, disruptions can produce rotation.

Rotation is MHD driven zonal flow.

Both toroidal and poloidal rotation are produced.

Toroidal rotation period in disruption is comparable to duration of wall force, a few
linear growth times.

Toroidal rotation is sheared, peak value can be 10× larger than average value.

ELMs can produce rotation.

MHD activity may produce intrinsic toroidal rotation [Rice 2007].

RMPs may also drive rotation, so there might be a momentum source without disrup-
tions or ELMs.

Rotation driven by RMP might stabilize RWMs, possibly also VDEs.
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Theory

Conservation of toroidal angular momentum:

∂

∂t
Lφ =

∮

(RBφBn − ρRvφvn)Rdldφ (1)

where the total toroidal angular momentum is

Lφ =

∫

ρR2vφdRdZdφ (2)

and the integral in (1) is over the boundary. Using the M3D magnetic field represen-
tation,

B = ∇ψ ×∇φ+
1

R
∇⊥F +G∇φ (3)

in (1) yields

∂

∂t
Lφ =

∮

G
∂ψ

∂l
dldφ (4)

where ∂F/∂n = 0 at the boundary. We have assumed that vφ = 0 at the boundary,
but not vn = 0 at the boundary, although we have done so in simulations with M3D.

If G = G(ψ), then toroidal angular momentum Lφ is conserved. This is the case
in an equilibrium satisfying the Grad - Shafranov equation. If the plasma is not in
equilibrium, such as during a disruption or ELM, then net flow can be generated.
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The magnetic fluxes ψ andG can be split into equilibrium and toroidally varying parts,
ψ = ψ0 + ψ1, G = G0 + G1. For simplicity we assume circular equilibrium cross
sections, dl = rdθ. The perturbed magnetic fluxes ψ1 and G1 approximately satisfy
[Strauss 1977]

ψ1 = B0 · ∇ξ (5)

G1 = −∇G0 ×∇ξ · φ̂ (6)

where ξ is the perturbation displacement, given by

ξ =
∑

m

ξmn sin(mθ − nφ) (7)

Now

L̇φ = −
G′

0B

rR

∮

∂ξ

∂θ

∂

∂θ

(

1

q

∂ξ

∂θ
+
∂ξ

∂φ

)

dθdφ (8)

where we approximatedB/R = constant. The integral (8) vanishes except for a term

L̇φ =
G′

0B

2rR

∮
(

∂ξ

∂θ

)2
1

q2
∂q

∂θ
dθdφ. (9)

The integral (9) does not vanish if we assume the plasma is displaced by a VDE with
(m,n) = (1,0),

q = q(r − ξ10 sin θ), ξ = ξ(r − ξ10 sin θ, θ, φ), ψ(r − ξ10 sin θ, θ, φ) (10)
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Then ∂q/∂θ = −ξ10 cos θq′. Assuming a rigid wall and γτwall ≫ 1, then ξ = 0, ψ ≈

0 at the boundary, and ψ = −ξ10 sin θψ′, ξ = −ξ10 sin θξ′.

We must have at least two modes (m,n), (m+ 1, n) contributing to ξ, which beat
together to give a cos θ term. It is useful to express (9) using (5) in terms of Bθ =
−ψ′,

Bθ =
∑

mn

Bθmn sin(mθ − nφ) (11)

with

Bθmn = −
B

qR
(m− nq)ξ′mn (12)

which gives

dLφ

dt
= −π2rq′G′

0ξ
3
10

R

B

∑

mn

m(m+1)BθmnBθ(m+1)n

(m− nq)(m+1− nq)
(13)

Magnetic field perturbations at the boundary, as well as a vertical asymmetry, can
allow for a net plasma rotation.
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VDE - kink disruption

(a) (b) (c)

(a) The poloidal magnetic flux ψ during a disruption at toroidal angle φ = 0, time
t = 155τA. Parameters: S = 105, τw = 103τA. (b) Toroidal magnetic flux G at
the same toroidal angle and the same time. The contours of G and ψ are different,
indicating that toroidal angular momentum can be generated. (c) Toroidal velocity vφ
at the same toroidal angle and time. The flow is sheared; it is zero on axis and small
near the wall.
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VDE - kink disruption

(a) (b) (c)

(a) slice plot of vφ(R,0,0) at time t = 155τA showing sheared structure. (b)
Toroidally varying part of ψ at the same time. (c) Perturbed toroidal magnetic flux
G at the same toroidal angle and the same time. The contours of G and ψ are differ-
ent, indicating that toroidal angular momentum can be generated.
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Time history of disruption
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Time history of the simulation shown in previous figures. Shown are Vφ, Vp, TPF ,
and Fx. Vφ =< ρvφ > / < ρ >, where the bracket is the volume average, and

Vp =<
√

v2
⊥
> are multiplied by 100. Fx, the sideways wall force, is multiplied

by 104. The rotation drive is largest when TPF is largest, and the peak rotation
coincides with the peak Fx.
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Toroidal Rotation in Disruptions: Summary

Vφ = 0.01vA, duration of Vφ is about 1/γ = 100τA.

The plasma makes one rotation during the time when the sideways force Fx is sub-
stantial.

The rotation is sheared; spatial maximum of vφ ≈ 5× < vφ >, hence 3D struc-
tures could rotate several times during the disruption, consistent with experimental
observations on JET.

The time history of Vφ, Vp is insensitive to τwall, when τwall ≫ τA.

Note Vφ ≈ Vp. In disruptions, the poloidal and toroidal velocities are comparable.

The peak density drive is associated with largest TPF. The peak toroidal velocity
coincides with the peak wall force.

The toroidal velocity is damped on a longer time scale, by viscosity, mode locking to
resistive wall [Hender 1989], or other effects [Boozer, 2010].
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Poloidal Rotation

The vorticity is

ẇ = −(∇×
∂ρv

∂t
) · ∇φ = ∇ · (

Bφ

R
J−

Jφ

R
B) (14)

Then

Ẇ =

∫

ẇRdRdZdφ =

∮

(BφJn − JφBn)dldφ (15)

We find that only the first term on the right is nonzero, with only the term

Jn =
1

R

∂2ψ

∂n∂φ
+ . . . (16)

contributing. Expressing G in terms of ξ as in (5),(6), setting ψ′ = −Bθ and expand-
ing ξ = −ξ10 sin θξ′ as before

Ẇ =
G′

0ξ10

R2

∮

∂

∂θ
(sin θξ′)

∂Bθ

∂φ
dθdφ (17)

Expanding ξ in Fourier series and expressing ξ′mn in terms of Bθmn as in (12), we find
that

Ẇ = −
π2qG′

0ξ10

BR

∑

mn

(2m+1− nq)nBθmnBθ(m+1)n

(m− nq)(m+1− nq)
(18)

which is similar in form to (13).
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ELM example

This is from a movie of a DIII-D ELM simulation in /project/projectdirs/mp288/sugiyama/movie
pasden − psi 126006 movie1a 3drot n018 n058.mpeg. Rotation is obvious in

the movie, and looks like both poloidal and toroidal rotation. Two isosurfaces of den-
sity are plotted.
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ELM

(a) (b) (c) (d)

ELM simulation of DIII-D 126006, S = 105, τwall = 100τA. (a) The poloidal magnetic
flux ψ at toroidal angle φ = 0, time t = 154τA. (b) perturbation of ψ. (c) toroidal
magnetic flux G (d) Toroidally averaged toroidal velocity.
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Time history of ELM
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Time history of the simulation shown in previous figure. Shown are Vφ and V⊥. The
maximum value of Vφ = 0.05vA. The results are insensitive to τwall/τA.
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Intrinsic toroidal rotation

Scaling law of rotational Alfvén Mach number Mφ ∝ βN has been obtained where
Mφ = vφ/vA. “ ... scalings of intrinsic rotation with normalized gyro - radius or
collisionality show no correlation. Whether this suggests the predominant role of
MHD phenomena such as ballooning transport over turbulent processes in driving
the rotation remains an open question.” [Rice 2007] This was a comparative study of
intrinsic toroidal rotation in H mode plasmas, in several experiments.

In a high β large aspect ratio approximation [Strauss 1977], G0 = −Rp/B, so a
β scaling emerges naturally. This tends to be a better approximation in an H mode
pedestal, where there is a relatively large pressure gradient. The VDE could be
replaced by vertical asymmetry, and the 3D perturbations could be ballooning modes
which occur in ELMs. Writing (13) in terms of the normalized time 1/(γτA), and
dividing both sides by ργτA gives the scaling

Mφ ≈
1

γτA

R

r

ξ310
r3
B2
θmn

B2
βN , (19)

where βN = ǫpR/(BIφ).

Taking γτA = 0.01 as above, Bθ/B = 0.01, ξ10/r = 0.5 and βN = 3 yields

Mφ ≈ 10−2 (20)

consistent with the simulations above and with the ITER prediction of [Rice 2007].
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RMP toroidal rotation

It is possible to get a nonzero RMP net velocity. Like the disruption and ELM cases, it
seems to require two modes and a vertical asymmetry. The total toroidal momentum
is

L̇φ =

∮

λ′
∂λ

∂φ
rdθdφ. (21)

where the prime is a normal derivative, and in the vacuum,

B = ∇ψ ×∇φ+G0∇φ+∇λ (22)

where G0 = constant, and ψ is independent of φ. Again assume a vertical asymme-
try, λ = λ(r − ξ10 sin θ, θ, φ). Then

L̇φ = −ξ10

∮

sin θ(λ′
∂λ′

∂φ
+ λ′′

∂λ

∂φ
)rdθdφ (23)

Let λ =
∑

mn λmn cos(mθ − nφ), and λ′mn ≈ (m/r)λmn. The result is

L̇φ =
π2

4r
ξ10

∑

mn

n(2m+1)2λmnλ(m+1)n (24)
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RMP

(a) (b) (b) (c)

Application of RMP to DIII-D 126006 [Strauss et al. 2009]. (a) poloidal magnetic flux
ψ at toroidal angle φ = 0, time t = 259τA. (b) perturbed n = 3 poloidal flux (c)
toroidal magnetic flux G at same time. (d) toroidal velocity. In this simulation there is
no initial rotation. The RMP excites ELM - like perturbations, which in turn produce
rotation. In previous RMP simulations [Strauss et al. 2009] rotation was included
initially, and it screened the RMP from the plasma.
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Time history of RMP
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Time history of the simulation shown in previous figure. Shown are Vφ and V⊥. The
maximum value of Vφ = 0.025vA, similar to disruption and ELM.
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Conclusions

MHD can drive toroidal and poloidal rotation.

Rotation is MHD driven zonal flow.

Need nonzero B perturbations at the wall to get a net rotation.

Toroidal rotation period in disruption is comparable to duration of wall force, a few
linear growth times. Rotation is damped by viscosity.

Toroidal rotation is sheared, peak value can be 10× larger than average value.

MHD activity may produce intrinsic toroidal rotation [Rice 2007].

RMPs also drive rotation, perhaps there could be rotation without ELMs.

The rotation might be enough to stabilize RWMs in ITER.
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