Resistive Wall Model in M3D-C1

by Nate Ferraro

Presented at the CEMM Meeting

March 23, 2014

New Resistive Wall Capability Has Been Implemented in M3D-C1

through the wall

2

Advantages and Disadvantages of Including Resistive Wall In Domain

• Advantages:

- Computation is more scalable than using RW BCs
 - RW BCs couple all finite elements touching the boundary
- Can add time/space dependent physical attributes of wall
 - Resistivity, temperature
- Can treat non-thin walls
 - Can also be done in principle with RW BCs, but not yet implemented

• Disadvantages:

- Bigger matrices
 - But non-MHD regions do not make matrices more poorly conditioned
- Need to include PF coils inside domain
- Still need a conducting boundary somewhere
 - This could be a problem in STs like NSTX-U

3

Some Algorithmic Changes Required for RW Model

• Poloidal field coils are now inside domain

- PF coil fields must be treated separately (inconsistent with J=0 equation in vacuum) → new terms!
 - $\mathbf{J} \times \mathbf{B} \rightarrow \mathbf{J}_{\text{plas}} \times \mathbf{B}_{\text{tot}}$

• GS Solve can no longer be fixed boundary

- PF coil fields must be treated separately again
- Need coil current data from "a" or "m" eqdsk files
- GS solve is much less stable, requires feedback stabilization
 - Added proportional controllers on R_{axis} and Z_{axis}

Vertical Displacement Events (VDEs)

Nonlinear Calculation Recovers n = 0 Instability In DIII-D VDE Discharge

- DIII-D discharge 088806 disrupted due to gas injection
 - Vertical stability was lost shortly after thermal quench (TQ)
 - Timescale ~ 3 ms

6

Nonlinear Calculation Recovers n = 0 Instability In DIII-D VDE Discharge

- M3D-C1 was initialized using the reconstructed equilibrium just after TQ (t = 1720 ms)
 - Equilibrium is re-solved on M3D-C1 grid
- Nonlinear n = 0 calculation uses realistic plasma parameters
 - Spitzer resistivity
 - Anisotropic thermal conductivity
 - Anomalous perp. transport
- RW approximates first wall, not vacuum vessel here; using "modern" first wall, different from old experiment

Calculation Shows Vertical Displacement Into Lower Divertor

- Initial results from low-resolution calculation with large wall resistivity ($\eta_W = 1.9 \times 10^{-3} \Omega$ -m)
- Both Halo (co-current) and Hiro (counter-current) currents are found
 - Unclear how these will scale with η_W

Calculation Shows Vertical Displacement Into Lower Divertor

Linear Growth Rate of VDE Scales with Wall Resistivity

- VDE is faster, more violent as η_W is increased
- Increasing η_W by factor of 10 increases growth rate by factor of ~6
 - $\gamma \sim \eta_W^{0.78}$
 - ~ 2 ms from onset of linear growth to hit wall at η_W = 1.9×10⁻³ Ω-m
- More cases are needed to determine scaling!

3D Response

M3D-C1 Can Solve Time-Independent Linear Plasma Response To Applied 3D Fields

- M3D-C1 directly solves inhomogeneous linear system to obtain time-independent response
 - Linear system is poorly conditioned; solved by LU factorization
- With resistive wall, time-independent solution includes plasma response and eddy currents in the wall

M3D-C1 Calculations With Resistive Wall Show Fields Due to Plasma Response Near or Beyond Wall

B_{R} at R = 0.98 m

 The extent to which magnetics data reveals internal structures has not yet been explored with M3D-C1

Internal Plasma Response is Changed Quantitatively By Resistive Wall

- Screening is generally found to be stronger in the case with the superconducting wall
 - External kinks and tearing modes are stabilized by wall
- Amplification at pedestal top (near $\omega_e = 0$) persists
- Presumably, finite-frequency response decreases with lower $\eta_{\rm W}$
 - Stable external kinks are moved farther from marginal stability
 - This has not yet been quantified with M3D-C1

Resistive Wall Increases Internal Response

- External kinks and tearing modes are stabilized by superconducting wall
- Effect on torques, fast ion transport have not been quantified
- Resistive vs.
 Superconducting results should converge in highfrequency limit

Unexpected Behavior: Time-Independent Response Depends on Wall Resistivity

- The time-independent response apparently depends on η_W
 - Screening generally improves as η_W decreases

- Why is this happening?
 - Can't be eddy currents (zero frequency)
 - Could be plasma currents flowing through wall?
 - Bug?

Summary

- A resistive wall model has been implemented in M3D-C1, in which the wall and surrounding vacuum region are included in the computational domain
- Preliminary tests successfully obtain VDEs, RWMs, and timeindependent 3D plasma response with RW
- VDE calculations with large $\eta_{\rm W}{\rm show}$ both Hiro and Halo currents
- In linear 3D response, screening is changed quantitatively, but edge screening and amplification at pedestal top remains

Future Work

- VDE cases will be run at realistic values of η_W to try to make quantitative comparison with experiments
 - How do wall forces scale with η_W ?
 - Will Hiro currents persist at low η_W ?
- RWM calculations will be done for experimentally relevant discharges
- 3D response calculations can now be compared to magnetic probe data
 - To what extent can MP data be used to probe internal response?
 - Lots of data from new DIII-D MPs for validation

