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Resistive DCON

» DCON computes the ideal MHD stability of axisymmetric toroidal plasmas.
Thoroughly verified and validated, robust, reliable, easy to use, widely used.

» Ideal DCON integrates the Euler-Lagrange equation for Fourier components of the
normal displacement from the magnetic axis to the plasma-vacuum interface. This
is an initial value problem.

» Straightforward extension to compute the outer region matching data for resistive
instabilities converts it to a shooting method, which is numerically unstable.

» Pletzer and Dewar introduced a singular Galerkin method, avoiding this problem.

» We have improved on their implementation with a better choice of basis functions
and grid packing.

» This has been coupled to the inner region resistive MHD model of Glasser, Greene
& Johnson, solved by DELTAR, and a vacuum region, solved by Chance’s
VACUUM.

_» We have obtained good agreement with the straight-through linear MARS code.
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Pletzer & Dewar References

» A.D.Miller & R. L. Dewar, “Galerkin method for differential
equations with singular points,” J. Comp. Phys. 66,356-390 (1986).
Introduces Galerkin method for singular ODEs, solves test problems.

» R.L.Dewar & A. Pletzer, “Two-dimensional generalization of the
Newcomb equation,” J. Plasma. Phys. 43, 2,291-310 (1990).
Derives 2D Newcomb equations, equivalent to DCON equation.

» A.Pletzer & R. L. Dewar, “Non-ideal Variational method for
determination of the outer-region matching data,” J. Plasma Phys.
45,3,427-451 (1991).

Solves cylindrical problem with non-monotonic g profile.

» A.Pletzer, A. Bondeson, and R. L. Dewar, “Linear stability of
resistive MHD modes: axisymmetric toroidal computation of the
outer region matching data,” J. Comp. Phys. 115, 530-549 (1994).
Solves toroidal problem, PEST 3, verified against MARS code.
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Galerkin Expansion

Euler-Lagrange Equation

LE= —(F2' + KE)' + (K'Z' + GE) =0
Galerkin Expansion
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(O“i, LE) = (Q’i, L()“j)Ej =0

Lij = (ai, Fa‘;) + (i, Kay) + (ou, KTa;) + (i, Gay)

Finite-Energy Response Driven by Large Solution

Lijgj = —(O’i, Lé)
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Dewar and Pletzer:

Linear Finite Elements on a Packed Grid
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The choice of basis functions determines
the rate of convergence.
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Higher-Order Basis Functions

C? Jacobi Nodal Basis
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» Diagonally
dominant
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C! Hermite Cubics
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» Cubic polynomials on
(0,1).

« C! continuity:
function values and
first derivatives

e Useful for nonresonant

solutions across the

singular surface.
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Singular Elements

» Weierstrass Convergence Theorem:
Polynomial approximation uniformly convergent for analytic functions.

» Big and small resonant solutions are non-analytic near the singular
surface.

» Supplement polynomial basis with small resonant solution near
singular surface.

» DCON fits equilibrium data to Fourier series and cubic splines,
computes resonant power series to arbitrarily high order.

» Convergence requires that the large solution be computed to at least
n = 2*sqrt(-di) terms. PEST 3 is limited ton = 1.
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Adjustable Grid Packing: Equations

Grid Packing Function
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Adjustable Grid Packing: Graphs
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Chease Equilibrium, 1 Singular Surface, f = 0.774
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Comparison with MARS Code, 1 Singular Surface
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Eigenvalue Benchmark with MARS Code
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Glasser Effect: Complex Growth Rate Near A’ = A,
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Chease Equilibrium, 2 Singular Surfaces, 5 = 0.240
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Comparison with MARS Code, 2 Singular Surfaces
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Matched Asymptotic Expansions

» The method of matched asymptotic expansions was introduced by Furth, Killeen, and
Rutherford in order to obtain analytical results.

» Most recent work uses straight-through methods, such as M3D and NIMROD, using packed
grids to resolve singular layers.

» Thermonuclear plasmas are in a regime where conditions for the validity of matched
asymptotic expansion are very well satisfied.

» Resistive DCON and DELTAR provide numerical methods to do the full matching problem
numerically and very efficiently.

» Inner region dynamics can be extended to include full fluid and kinetic treatments.

» Nonlinear effects are localized to the neighborhood of the singular layers and solved with the
2D HiFi code, exploiting helical symmetry, matched through ideal outer regions.

» Asymptotic matching and straight-through methods can complement and verify each other.
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Future Work

» Improved benchmarks vs. MARS.

» Reconstruction of inner region eigenfunction by Fourier transformation.
» More complete fluid regime model of linear inner region; Braginskii.

» Neoclassical inner region model, drift kinetic equation; Ramos.

» Nonlinear model, NTM, with nonlinear effects localized to inner regions,
coupled through ideal linear outer region. 2D HiFi code, helical
symmetry.

» Verification with straight-through nonlinear codes: NIMROD, M3D-Cl.

» Validation against experiments: NSTX, D-IIID.
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