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Resistive DCON	


Ø DCON computes the ideal MHD stability of axisymmetric toroidal plasmas.  

Thoroughly verified and validated, robust, reliable, easy to use, widely used.	



Ø Ideal DCON integrates the Euler-Lagrange equation for Fourier components of the 
normal displacement from the magnetic axis to the plasma-vacuum interface.  This 
is an initial value problem.	



Ø Straightforward extension to compute the outer region matching data for resistive 
instabilities converts it to a shooting method, which is numerically unstable.	



Ø Pletzer and Dewar introduced a singular Galerkin method, avoiding this problem.	



Ø We have improved on their implementation with a better choice of basis functions 
and grid packing.	



Ø This has been coupled to the inner region resistive MHD model of Glasser, Greene 
& Johnson, solved by DELTAR, and a vacuum region, solved by Chance’s 
VACUUM.	



Ø We have obtained good agreement with the straight-through linear MARS code.	
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Pletzer & Dewar References	


Ø  A. D. Miller & R. L. Dewar,  “Galerkin method for differential 

equations with singular points,” J. Comp. Phys. 66, 356-390 (1986).���
Introduces Galerkin method for singular ODEs, solves test problems.	



Ø  R. L. Dewar & A. Pletzer, “Two-dimensional generalization of the 
Newcomb equation,” J. Plasma. Phys. 43, 2, 291-310 (1990).���
Derives 2D Newcomb equations, equivalent to DCON equation.	



Ø  A. Pletzer & R. L. Dewar, “Non-ideal Variational method for 
determination of the outer-region matching data,” J. Plasma Phys. 
45, 3, 427-451 (1991).���
Solves cylindrical problem with non-monotonic q profile.	



Ø  A. Pletzer, A. Bondeson, and R. L. Dewar, “Linear stability of 
resistive MHD modes: axisymmetric toroidal computation of the 
outer region matching data,” J. Comp. Phys. 115, 530-549 (1994).���
Solves toroidal problem, PEST 3, verified against MARS code.	
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Galerkin Expansion	





Glasser, Resistive DCON, CEMM/Sherwood 2014 Slide 4	



Dewar and Pletzer: 	


Linear Finite Elements on a Packed Grid	



The choice of basis functions determines 	


the rate of convergence.	
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C0 Jacobi Nodal Basis C1 Hermite Cubics 

Higher-Order Basis Functions 

•  Lagrange 
interpolatory 
polynomials 

•  Nodes at roots of 
(1-x2) Pn

(0,0)’(x) 

•  Diagonally 
dominant 

•  Cubic polynomials on 
(0,1). 

•  C1 continuity:  
function values and 
first derivatives 

•  Useful for nonresonant 
solutions across the 
singular surface. 
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Singular Elements	


Ø Weierstrass Convergence Theorem: ���

Polynomial approximation uniformly convergent for analytic functions.	



Ø Big and small resonant solutions are non-analytic near the singular 
surface.	



Ø Supplement polynomial basis with small resonant solution near 
singular surface.	



Ø DCON fits equilibrium data to Fourier series and cubic splines, 
computes resonant power series to arbitrarily high order.	



Ø Convergence requires that the large solution be computed to at least ���
n = 2*sqrt(-di) terms.  PEST 3 is limited to n = 1.	
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Adjustable Grid Packing: Equations 
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Adjustable Grid Packing: Graphs 
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Chease Equilibrium, 1 Singular Surface, βN = 0.774	


Flux Surfaces	

 Safety Factor	



Pressure	

 Newcomb Criterion	
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Comparison with MARS Code, 1 Singular Surface	



DCON	


MARS	



m=2	
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Eigenvalue Benchmark with MARS Code	
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Glasser Effect: Complex Growth Rate Near Δ’ = ΔC	
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Flux Surfaces	

 Safety Factor	



Pressure	

 Newcomb Criterion	



Chease Equilibrium, 2 Singular Surfaces, βN = 0.240	
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Comparison with MARS Code, 2 Singular Surfaces	


1 1 1 1 2 2 2 2R R L L R R L LC C C Cξ ξ ξ ξ ξ= + + +(b) (s) (s)

,R R RR R RL L reg Rξ ξ ξ ξ ξ= +Δ +Δ +(b) (s) (s)
,L L LR R LL L reg Lξ ξ ξ ξ ξ= +Δ +Δ +

DCON	


MARS	



DCON	


MARS	



CL1=1.0       CR1 =-1.005     	


CL2=0.769   CR2=-0.769	



CL1=1.0       CR1 =-1.005  
CL2=0.3       CR2=-0.3	



DCON solution from matching	

 DCON solution with artificial coefficients	





Glasser, Resistive DCON, CEMM/Sherwood 2014 Slide 15	



Matched Asymptotic Expansions	


Ø  The method of matched asymptotic expansions was introduced by Furth, Killeen, and 

Rutherford in order to obtain analytical results.	



Ø  Most recent work uses straight-through methods, such as M3D and NIMROD, using packed 
grids to resolve singular layers.	



Ø  Thermonuclear plasmas are in a regime where conditions for the validity of matched 
asymptotic expansion are very well satisfied.	



Ø  Resistive DCON and DELTAR provide numerical methods to do the full matching problem 
numerically and very efficiently.	



Ø  Inner region dynamics can be extended to include full fluid and kinetic treatments.	



Ø  Nonlinear effects are localized to the neighborhood of the singular layers and solved with the 
2D HiFi code, exploiting helical symmetry, matched through ideal outer regions.	



Ø  Asymptotic matching and straight-through methods can complement and verify each other.	
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Future Work	


Ø Improved benchmarks vs. MARS.	



Ø Reconstruction of inner region eigenfunction by Fourier transformation.	



Ø More complete fluid regime model of linear inner region; Braginskii.	



Ø Neoclassical inner region model, drift kinetic equation; Ramos.	



Ø Nonlinear model, NTM, with nonlinear effects localized to inner regions, 
coupled through ideal linear outer region.  2D HiFi code, helical 
symmetry.	



Ø Verification with straight-through nonlinear codes: NIMROD, M3D-C1.	



Ø Validation against experiments: NSTX, D-IIID.	




