Studies of Repeating Sawteeth using M3D-C1

Presented by S. C. Jardin

J. Breslau, J. Chen, N. Ferraro¹, I. Krebs²

Princeton Plasma Physics Laboratory 1General Atomics 2IPP, Garching

> CEMM Meeting Sunday 23 March 2014 Bahia Hotel, San Diego, CA

We are using M3D-C1 to solve the MHD equations to compute the self-consistent long-time (transport timescale) behavior of a tokamak discharge subject to:

- loop voltage $(I_p$ controller)
- density source (n_e controller)
- heating source (NB)
- momentum source (NB)
- shaping fields
- Standard transport model:
- resistivity η
- viscosity ν
- thermal conductivity κ_{\parallel} & κ_{\perp}
- particle diffusivity D
- ion-skin depth $d_i = c/\omega_{pi}$

$$
\eta = \eta_0 \left(\frac{T_e}{T_{e0}}\right)^{-3/2} \quad \nu, D = \text{const} \qquad \kappa_{\perp} = \kappa_0 \left(1 + \alpha \left|\nabla T\right|^2\right) \left(\frac{p}{p_0}\right)^{-1/2} \qquad \kappa_{\parallel} \simeq 10^5 \,\kappa_0
$$

- Variable heating source, momentum source, and ion-skin depth.
- Initial conditions have $q_0 < 1$, so one sawtooth always occurs.
- Emphasis is on large S >> 10^6 and realistic d_i

Note: results presented today have α = 0.

2 *Can we quantitatively model full repeating sawtooth cycles?*

Code Improvements for efficient 2F nonlinear

- Variable timestep
	- Set a minimum and a maximum GMRES iterations: KSP_MIN and KSP_MAX
	- $-$ Reduce Δt by 5% if # of iterations > KSP_MAX
	- $-$ Increase Δt by 5% if # of iterations < KSP_MIN
- Implicit treatment of hyper-resistivity terms:

2 $\mathbf{A} = R^2 \nabla \varphi \times \nabla f + \psi \nabla \varphi - F_0 \ln R \hat{Z}, \qquad \mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla_{\perp} f' + F \nabla \varphi$

 $\mathbf{V}_M = \begin{bmatrix} \psi, F, f, \Delta^* \psi \end{bmatrix} \Longleftrightarrow$ Magnetic field variables in implicit advance

- [optional] third term improves numerical stability
- $-$ [optional] $4th$ term allows implicit hyper-resistivity... reduces GMRES iterations
- Results with/without this term being compared
- Electron mass in Ohm's law
	- Adds (small) diagonal term in two-fluid advance
	- Results with/without this term being compared

2 $F \equiv F_0 + \nabla_\perp^2 f$ $f' \equiv \partial f / \partial \varphi$

Summary of results:

- low β (< 0.5%) discharges exhibit periodic oscillations
- However
	- do not observe fast Te crash
	- unrealistic scaling with η
	- 2-fluid ($d_i > 0$) effects do not change these conclusions
- For higher β discharges, the oscillations die out
	- stationary state is formed with $q_0 = 1 + \varepsilon$ and helical poloidal flow
	- sheared rotation and 2F terms can bring these oscillations back

Typical periodic oscillations S=106 , β*=.001*

Typical Kadomsev-like periodic oscillations S=106 β*=.001*

Viscosity Scan at constant S=106 and β*=.001*

- Max KE amplitude increases with μ ⁻¹ (to a point)
- Period increases with μ
- Lowest μ can have more complex behavior (bouncing)
- Basic character of repeating Kadomsev reconnection unchanged

CMOD08 CMOD10 CMOD26 CMOD30

Resistivity scan: β *= .001, no rotation*

- Period gets longer as η gets smaller as $\eta^{-0.43}$
- Kinetic energy (and Δ Te) per event decreases as η
- Less like Kadomsev reconnection at highest S values as KE does not decrease to low value between events
- CMOD07 μ = 10 E-5 CMOE09 $\mu = 10$ CMOD29 μ = 2.5 CMOD1E μ = 1.0

• Δq_0 decreases from 0.05 to less that 0.01 as η decreases

Resistive MHD leads to scaling that is inconsistent with experiment at high S >> 106 !

Change in q_0 between sawteeth: $\Delta q_0 = \eta \Delta t$

displacement due to resistive MHD: $\xi = \xi_0 e^{\gamma \Delta t}$

if
$$
\gamma \sim \eta^{1/3}
$$
, time for N e-foldings: $\Delta t = \frac{N}{\gamma} \sim \eta^{-1/3}$

$$
\Delta q_{0} = \eta \, \Delta t - \eta^{2/3} \to 0 \text{ as } \eta \to 0
$$

This seems to rule out Kadomtsev reconnection at high S . (This conclusion reached by Wesson in 1987)

Comparison of resistive MHD and 2F MHD

- Two simulations with same β =.001 and S=10⁶: with and without 2F terms
- Two-fluid terms change the initial behavior, but not the long-time behavior of repeating sawteeth.
- Still no fast Te crash after the first ST

CMOD16G CMOD25G

Summary of results:

- low β (< 0.5%) discharges exhibit periodic oscillations
- However
	- do not observe fast Te crash
	- unrealistic scaling with η at high S
	- 2-fluid ($d_i > 0$) effects do not change these conclusions
- For higher β discharges, the oscillations die out
	- stationary state is formed with $q_0 = 1 + \varepsilon$ and helical poloidal flow
	- sheared rotation and 2F terms can bring these oscillations back

β*=0.5% -- oscillations die out to form stationary state*

q-profile at final time t=40000 τ_{Λ}

12

Note: This is a self-organized state!

Stationary state has flattened current profile

Comparison of current density and Te in 3D case (different angles) and 2D show that current flattening is 3D effect

run15

Central poloidal flow flattens current profile

$$
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
\
$$

Contours of poloidal velocity stream function at final time

Unstable flattened current and pressure profiles with $q_0 = 1 + \varepsilon$ drive interchange mode which in turn keeps current flat

Hill's vortex like flow pattern in center

This agrees with the "quasi-interchange" model of Wesson. However, it is stationary and not repeating as in experiment.

Summary of results:

- low β (< 0.5%) discharges exhibit periodic oscillations
- However
	- do not observe fast Te crash
	- unrealistic scaling with η
	- 2-fluid ($d_i > 0$) effects do not change these conclusions
- For higher β discharges, the oscillations die out
	- stationary state is formed with $q_0 = 1 + \varepsilon$ and helical poloidal flow
	- sheared rotation and 2F terms can bring these oscillations back

Sheared rotation tends to cause oscillations to reappear (for some cases)

- Comparison of two runs with same β = 0.5% and same S=10⁶
- Two-fluid (TF) terms lead to faster initial crash, but not faster repeated crashes CMOD37G CMOD011
- In this case, the oscillations eventually died out, and system went back to the stationary state

More on Two-Fluid Effects

$$
n(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}) + \nabla p = \mathbf{J} \times \mathbf{B} - \nabla \cdot \mathbf{\Pi}_{GV} + \mu \nabla^2 \mathbf{V}
$$

$$
\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J} + d_i (\mathbf{J} \times \mathbf{B} - \nabla p_e)
$$

- Full Braginskii gyroviscous tensor
- Keep **J x B** term in Ohm's law
- 8 scalar variables advanced in time

• Ion skin depth:
$$
d_i = \frac{1}{\ell_0} \left[\frac{M_i}{\mu_0 n_0 e^2} \right]^{1/2} = .0227 \frac{1}{\ell_0 [m]} [n_0 [20]]^{-1/2}
$$

First 2F sawtooth shows distinctive shape

Surfaces are destroyed in reconnection region during temperature crash

Te crash

Future Directions

- Develop better understanding of saturated state with $q=1+\epsilon$
	- Very similar to "quasi-interchange" model of Wesson
	- How does this flatten current? Analytic model?
	- How does it flatten temperatures and densities?
	- Reproduce with alternate ψ equation to understand role of Φ
- Would a different transport model lead to a different saturated state?
	- Or, to repeated temperature crashes ?
- How does behavior depend on d_i (ion skin depth) at large S?
- Neoclassical effects
- Convergence studies

Alternate form of poloidal flux equation may shed light on the role of the electric potential in sustaining stationary state

$$
\dot{\mathbf{A}} = -\mathbf{E} - \nabla \Phi \qquad \qquad \mathbf{V} = R^2 \nabla U \times \nabla \varphi + \omega R^2 \nabla \varphi + R^{-2} \nabla_{\perp} \chi
$$

Alternate form with electric potential:

$$
\dot{\psi} = R^2 [U, \psi] - R^2 (U, f') - R^{-2} (\chi, \psi) - [\chi, f'] - \Phi' + \eta \Delta^* \psi + T F
$$

$$
\nabla_{\perp} \cdot \frac{1}{R^2} \nabla \Phi = \nabla_{\perp} \cdot \left[-\frac{F}{R^2} \nabla_{\perp} U + \frac{\omega}{R^2} \nabla_{\perp} \psi + \omega \nabla_{\perp} f' \times \nabla \varphi + \frac{F}{R^4} \nabla_{\perp} \chi \times \nabla \varphi \right]
$$

$$
+ \nabla_{\perp} \cdot \eta \left[-\frac{1}{R^2} \nabla F \times \nabla \varphi - \frac{1}{R^2} \nabla f'' \times \nabla \varphi - \frac{1}{R^4} \nabla_{\perp} \psi' \right] + T F
$$

We now solve this form with electric potential eliminated:

$$
\nabla_{\perp} \cdot \frac{1}{R^2} \nabla \psi = \nabla_{\perp} \cdot \frac{1}{R^2} \nabla R^2 [U, \psi] - \nabla_{\perp} \cdot \frac{1}{R^2} \nabla R^2 (U, f') + \nabla_{\perp} \cdot \left[\frac{F}{R^2} \nabla_{\perp} U \right] - \nabla_{\perp} \cdot \left[\frac{\omega}{R^2} \nabla_{\perp} \psi + \omega \nabla_{\perp} f' \times \nabla \varphi \right]'
$$

$$
- \nabla_{\perp} \cdot \frac{1}{R^2} \nabla R^{-2} (\chi, \psi) - \nabla_{\perp} \cdot \frac{1}{R^2} \nabla [\chi, f'] - \nabla_{\perp} \cdot \left[\frac{F}{R^4} \nabla_{\perp} \chi \times \nabla \varphi \right]'
$$

$$
+ \nabla_{\perp} \cdot \frac{1}{R^2} \nabla \eta \Delta^* \psi + \nabla_{\perp} \cdot \left[\frac{\eta}{R^2} \nabla F^* \times \nabla \varphi + \frac{\eta}{R^4} \nabla_{\perp} \psi' \right] + TF
$$

22

Summary

- Two types of long time behavior are observed for resistive MHD without momentum source:
	- periodic oscillations at low β
	- stationary states at higher beta
- Resistive MHD (without rotation) predicts non-physical scaling for sawtooth period and amplitude at large S
- Sheared rotation promotes periodic behavior and good surfaces
- Two fluid terms lead to:
	- more circular interior surfaces,
	- shorter reconnection layer
	- faster initial reconnection times
	- stochastic layer forms at late times
- However, do not observe fast Te crash for repeating sawteeth
	- something is missing in model ?? $\frac{1}{23}$

Extra viewgraphs

Stationary Helical State with Flow

In some cases, the sawteeth die out, and the system becomes stationary on all timescales.

CMOD run25 26

T=24000

27

Interior to the region where $q=1+\epsilon$, p, n, and T profiles are not constant on the magnetic surfaces. i.e., $p \neq p(\psi)$

Exterior to the q=1 surface, they are constant on surfaces $p=p(\psi)$

Terms in temperature equation

$$
u \cdot \nabla T_e = \eta J^2 + \nabla \cdot \kappa_\perp \nabla T_e
$$

Effect of Sheared Rotation

Without sheared rotation in ellipse:

No Rotation

10000

Time

12000

14000

16000

With Sheared Rotation

- sawteeth tend to die out
- large magnetic islands form

Comparison of surfaces for resistive and two-fluid MHD at similar stage in cycle shows reconnection layer is shorter in two-fluid. Rate increases by \sim 2

 $d_i = 0$ $=0$ d_i

 $d_i = 0.04$

Canonical periodic oscillating discharge

DIII-D 118164- J45 32

Differences in sawtooth behavior for bean-shaped and elliptical-shaped plasmas has been well documented experimentally (Lazarus, Tobias, …)

DIII-D shot 118164 DIII-D shot 118162

Comparison of Ellipse and Bean

Bean has shorter period, larger amplitude n=1, less decay in energy harmonics between ST.

Comparison of Ellipse and Bean

In Bean: $-$ q=1 surface extends to a larger radius -- q(0) does not vary as much during sawtooth cycle