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Tokamak operation with edge harmonic oscillations

. (EHO) provides access to a guiescent H-mode regime
TECH-X [Burrell 2012].

EHO is characterized by a small
toroidal mode number (n~1-5)

perturbation localized to the magnetic , ..
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flow shear is a key component in the
generation of EHO [Garofalo 2011].
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The physical mechanisms of EHO are not fully
TECH-): understood.

Linear MHD calculations
suggest EHO may be a
saturated kink-peeling mode
partially driven by flow-profile
shear [Snyder 2007].

It is hypothesized that the
saturated mode drives
sufficient particle and thermal
transport to maintain steady
state pedestal profiles.

Our intent is to investigate
the nonlinear physics.
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Our studies currently focus on a reconstruction
TECH-¢{ from DIII-D shot 14098 (t=4250 ms).
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* This case is strongly shaped with
an acute angle at the x-point.
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resistive MHD spectral convergence

Resistive-MHD computations produce a
ballooning-like growth-rate spectrum.
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We do not expect
uniform-wave initialized
nonlinear perturbations with
the growth-rate spectrum to
produce EHO.

However, it is known that the
flow profile is crucial to EHO.

These cases use
reconstructed density and
Spitzer-resistivity profiles with
Ti=Te=50 eV at the separatix.



s We have the ability to add individual components from
. the reconstructed flow profile to our nonlinear
TECH-X' computations.
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* Flow profile control 1s essential to produce the EHO state [Burell 2012,
Garofalo 2011 etc].

 We can vary the each contributions flow profiles.

* Profiles are shown for fp = fExB = fvp = 1.



» Resistive-MHD computations with flow again produce
a ballooning-like growth-rate spectrum and are
TECH->! destabilized relative to cases without flow.
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Preliminary nonlinear computations



Nonlinear computations from small-wave
perturbations initially produce ELM-like dynamics at
TECH>! large wavenumbers.
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* The most unstable mode is at the limit of the computation's toroidal resolution.

« Self-consistent computations require a combinations of additional resolution
and more advanced model equations (two-fluid and FLR effects).



s During saturation this case drives low-n perturbations

to significant amplitude.
TECH-X
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 However, the amplitude of these low-n perturbations does not exceed that of
the high-n perturbations.

« What is the effect of inclusion of two-fluid and FLR effects in this computation?



x‘" If the EHO state Is responsible for ELM suppression, Is
TECHD! there an alternative way to access this nonlinear state?

* We can to chose our initial perturbation carefully. We
propose using modest amplitude n=4 and n=5
perturbations from the linear spectrum.

* This method of study is not intended to (immediately)
produce a predictive model, i.e. given the reconstructed

axisymmetric state at t=3000ms it will not predict at
EHO state at t=3800ms.

 However, there are still a number of interesting
guestions it can answetr:

- What is the effect of EHO on transport and what is the

guasilinear modification by the EHO to the flow, current and
pressure profiles?

- How does EHO stabilize the high-n perturbations and
produce an ELM-free state?



s These large initial perturbation computations produce

a potential EHO-like state.
TECH-X
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« This computation requires higher toroidal resolution in order to run longer in time.

» This initial result is promising, but need to be run out 10-50x longer to be
compelling as a state of ELM stabilization.



&O

Recent interfacing of NIMROD with the MUMPS
TECH-)! external solver permits larger runs.

e Our tests show MUMPS has a smaller memory
footprint than SuperLU_DIST for NIMROD matrices.

« MUMPS also has OpenMP thread support and tests
show slightly better time-to-solution as a result of
slightly better parallel scaling than SuperLU_DIST
for runs with 100s on cores.

 The cases presented are close to converged,
Increasing the mesh resolution by a factor of 3-6
should be sufficient to fully resolve all dynamics.

* We are actively pursuing a computational hours
allocation for these higher-resolution runs.



X Summary
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* Linear case with and without flow produce a toroidal-mode
growth-rate spectrum that is peaked at large n.

* Preliminary nonlinear computations from small-wave
perturbations demonstrate high-n perturbations can drive
low-n activity during saturation.

* We also explore nonlinear computations where the intent
IS to access the nonlinear state by carefully choosing our
Initial condition.

* Preliminary results here are promising, and we are
applying for computational time to continue these studies.

* We also intend to study the linear and nonlinear effect of
Including additional physics (two fluid, FLR) in the model.



TECxH)’ Why Is NIMROD a suitable code for modeling EHO?

« EXxperimental observations show EHO is a low-n
perturbation and thus global computations are necessary.

* |n addition to the capability to model of flow-profile effects,
NIMROD also retains important two-fluid and FLR terms.

- Two-fluid effects are predicted to enhance the growth
rate at intermediate wavenumbers and cut it off at large
wavenumbers though diamagnetic effects
[Hastie, Ramos, Porcelli 2003].

 Even if the high wavenumber modes are stabilized by
two-fluid effects, they may be driven nonlinearly. Nonlinear
modeling of EHO saturation requires resolution of a large
toroidal mode spectrum.

 NIMROD is capable of modeling a realistic x-point
geometry.
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We analyze DIII-D shot 145098 at 4250 ms while the
TECH-): discharge is ELM free with broadband EHO.
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