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Outline

• velocity boundary conditions

– numerical comparison of Dirichlet, Neumann, DEBS, and Robin

– sheath compatible MHD boundary conditions

• halo current in disruptions

– Relation of toroidal variation of toroidal current to vertical displacement

– Halo vs. Hiro

– relative sign of perturbed plasma current and wall current

H. Strauss, Velocity boundary conditions at a tokamak resistive wall, Phys. Plasmas
21, 032506 (2014).
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Comparison of velocity boundary conditions on sideways force Fx in
disruption simulations

• Dirichlet: vn = 0, rigid wall
• Neumann: ∂vn/∂n = 0,

absorbing wall
• Robin ∂vn/∂n+ αvn = 0,

compromise
• DEBS vn = E×B/B2,

E = ηwallJwall

(a) Fx(τwall) for Neumann,
Dirichlet and DEBs velocity
boundary conditions. The force
is qualitatively similar, suggesting
that boundary conditions are not
the dominant effect. DEBS ≈
Dirichlet when τwall >> τA.

(b) Fx(α) for Robin boundary
condition with τwall = 20τA.
Neumann for α = 0, Dirichlet for
α→ ∞.
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sheath compatible boundary conditions

The velocity is

v = v⊥ + v‖
B

B
, v⊥ = c

E×B

B2
, E = ∇Φ−

1

c

∂A

∂t
(1)

The sheath potential accelerates ions to the sound velocity [Stangeby, 2000] cs =
(Te/Mi)

1/2 at which they strike the wall. The parallel velocity v‖ does not affect
the magnetic field, hence does not affect halo current or wall force. Near the wall
cs/vA ≈ 10−2, so v‖ ≈ 0 is a reasonable approximation.

The electrostatic potential Φ at the sheath entrance is approximately [Stangeby,
2000]

Φ ≈ 3
Te

e
. (2)

The perpendicular velocity normal to the wall, from (1),(2), is approximately

v⊥n = k⊥
c

B
Φ ≈ 3k⊥ρscs = 3rω∗ = O(ρs) (3)

where ρs is the gyroradius using cs. For modes with MHD scale length, k⊥ρs ≪ 1, so

v⊥n = 0 (4)

is a good approximation.
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∂A/∂t contribution to E

The sheath is described by the usual electrostatic approximation, in the case of inter-
est k⊥∆ << 1, where ∆ is the sheath thickness. This has been shown for radio -
frequency electromagnetic waves [D’Ippolito,2006] and it is easily verified for MHD.

The magnetic field in leading order does not vary in the sheath; (1/c)(∂A‖/∂t) varies

on the k−1
⊥ length scale. Otherwise magnetic perturbations of O(∆−1) would be

produced. Similarly bn is constant.

The b component of (1) can be integrated to give E‖ = ∇‖Φ̃ where

Φ̃ = Φ− (1/c)(∂A‖/∂t)s, (5)

and s is a local coordinate such that bn∂s/∂n = 1, and s = O(∆). Effectively
(1/c)(∂A‖/∂t) is absorbed into Φ by a gauge transformation.

Then a standard analysis [Stangeby, 2008] yields ne(Φ̃), ni(Φ̃).

The parallel electron momentum equation is

E‖ = −∇‖Φ̃ ≈ −
Te

ene
∇‖ne, ne ≈ n0

eΦ̃

Te
(6)

The ions also satisfy electrostatic momentum balance.
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From Maxwell’s equations, eliminating the displacement current using the Coulomb
gauge ∇ ·A ≈ ∇ ·A⊥ = 0, yields the standard equation for Φ̃,

∇2Φ̃ ≈
∂2Φ̃

∂n2
= 4πe[ni(Φ̃)− ne(Φ̃)]. (7)

The Coulomb gauge condition can be approximately satisfied by choosing

A⊥ = ∇χ×B, (8)

which is similar to the M3D representation. ThenB2 = B·∇×A⊥ = −∇·(B2∇χ)−
J×B · ∇χ.

This requires that ∂χ/∂n = O(∆), or else B2 is O(∆−1). Combining (1), (5), and
(8) gives the result thatBv⊥n/c= ∂Φ/∂l−∂2χ/∂n∂t= O(∆), where l is a poloidal
coordinate tangent to the wall.

Note that if Φ = (∆/c)∂A‖/∂t, then vn = k‖∆(Bn/B)vA = O(∆), taking ∂/∂t =
k‖vA, with k‖ << k⊥.

In the MHD limit in which ∆ and ρs are neglected, this implies that v⊥n satisfies a
Dirichlet boundary condition,

v⊥n = 0 (9)

and the total normal velocity is

vn = cs|bn| (10)

directed from the plasma into the wall.
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Halo current

(a)

(b)

Toroidal variation of toroidal current
It was found in JET that during disruptions, the
toroidal current varied with toroidal angle. It
was found that ∆Iφ/Iφ ≈ 0.08, where ∆Iφ
is the amplitude of the n = 1 variation.
(a) Current Iφ(φ, t) measured in quadrants of
JET, showing n = 1 toroidal variation.
(b) Toroidal current variation ∆Iφ vs. ∆MIZ,
vertical moment of the current: Hiro current?

L. E. Zakharov, Phys. Plasmas 15 062507
(2008).

S. N. Gerasimov, ITPA meeting, Abingdon
(2013).

The ratio of toroidal current perturbation Ĩφ to
vertical current moment MIZ is proportional to
the VDE displacement ξV DE.
H. R. Strauss, R. Paccagnella, J. Breslau,
Phys. Plasmas (2010) 17, 082505.
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Relation of toroidal current perturbation to vertical current moment

This is an update of the previous result and further numerical verification.

The vertical current moment, which is the perturbed current multiplied by z = r sin θ,
is

M̃IZ =

∫ a

0

J̃φr
2 sin θdrdθ = −

∮

∂ψ̃

∂r
a2 sin θdθ (11)

in a circular cross section where the boundary is r = a, noting that

J̃φ = −
1

r

∂

∂r
r
∂ψ̃

∂r
−

1

r2
∂2ψ̃

∂θ2
(12)

integrating by parts, and assuming that the wall is a good conductor, so that ψ̃ ≈ 0 at
r = a. The wall is assumed slightly resistive in order that the VDE can be unstable,
but the resistive wall penetration time τwall is assumed long compared to the growth
time of the modes.

The toroidal current is

Ĩφ =

∫ a

0

J̃φrdrdθ = −

∮

∂ψ̃

∂r
adθ (13)

Note that (11) and (13) differ by a factor of sin θ.
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Assuming that the region inside the wall, r < a, is entirely filled with plasma, the
poloidal flux change produced by a displacement potential Φ is

δψ = ∇Φ×∇ψ · φ̂ (14)

for an axially symmetric potential Φ. The VDE displacement potential has the form
Φ = ξV DE(r) cos θ. Iterating ψ̃ = ψ1+ψ2+ψ3+. . . and taking the radial derivative,
imposing a rigid wall boundary condition ξV DE(a) = 0, gives

ψ′
k+1 =

ξ′V DE
r

(

∂

∂θ
(ψ′

k cos θ) + 2ψ′
k sin θ

)

(15)

where the prime denotes a radial derivative. Summing (15) over k and integrating
over θ, using (11),(13) gives

Ĩφ = 2
ξ′V DE
a2

M̃IZ. (16)

In principle ψ′ can consist of an arbitrary sum of (m,n) modes.

For an upward VDE, with ξV DE(r) < 0, but ξV DE(a) = 0, it is necessary that
ξ′V DE(a) > 0. For an upward VDE, the ratio Ĩφ/M̃IZ is positive, and similarly for a
downward VDE, the ratio is negative.

To show this, calculate the displacement in the vertical direction, dy = ∇(r sin θ) ×

∇(ξV DE cos θ) · φ̂ = −ξV DE sin2 θ − rξ′V DE cos2 θ. Near the top and bottom of the
plasma, dy ≈ −ξV DE, indicating that an upward VDE requires negative ξV DE, and
positive ξ′V DE.
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numerical simulations

Plot of Ĩφ/M̃IZ as a function of vertical displacement. The FEAT15MA equilibrium
was modified by setting toroidal current and pressure to zero outside the q = 2 sur-
face, keeping the total toroidal current and pressure constant, modeling MGI induced
disruptions.
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Ĩφ

M̃IZ
=

∮

ĨφM̃IZdφ
∮

M̃2
IZdφ

For z > 1.6, the plasma edge q < 2
and the (1,1) is dominant, evidently
similar to JET. For z < 1.6, q = 2 at
the plasma edge and the (2,1) is dom-
inant.

For z < 1.6, current does not touch the wall so it can’t be Hiro current.
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sign of n > 0 toroidally varying wall current

Opposite sign of toroidal varying of toroidal current and wall current is not dependent
on Hiro current. Integrating ∇ · J = 0 over the plasma

∂Ĩwallφ

∂φ
= −Ihalo3D

where

Ihalo3D =

∫

J̃nRdl.

Then integrate ∇·J = 0 over the thin wall of thickness δwall surrounding the plasma.
In the wall,

∂Ĩwallφ

∂φ
= Ihalo3D

where

Ĩwallφ = δwall

∫

J̃wallφ dl.

It follows immediately that

Ĩφ + Ĩwallφ = 0,

the toroidally varying toroidal current in the wall is equal and opposite to the toroidally
varying toroidal current in the plasma.
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n = 0 case

In the n = 0 case, the wall current is produced by magnetic flux pushed into the wall.
It is also opposite the sign of the plasma current.

We can use the previous displacement model, except
now consider the equilibrium (0,0) and mode (1,0),

ψ′
1 =

ξ′V DE
r

ψ′
0 sin θ

The magnetic flux at the wall satisfies

γV DEψ1 = −ηwallJ
wall
φ

where γV DE is the VDE growth rate and the wall cur-
rent is

Jwallφ =
1

δwall
(ψ′

1 − ψ′
v) (17)

where ψv is the vacuum poloidal flux ψv = ψ1a/r, and

ψ′
v = −

ψ1

r
(18)
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(a)

(b)

Combining,

(1 + γV DEτwall)ψ1 = −aψ′
1 (19)

where τwall = δwalla/ηwall, which gives

Jwallφ = −
γV DEτwall

1+ γV DEτwall

ψ′
1

δwall
(20)

Note that the VDE growth rate is γV DEτwall = c0 ≈ 1.
Defining Iwallφ = πδwallaJ

wall
φ , with Iφ = −2πa2ψ′

0

Iwallφ = −
c0

1+ c0
aξ′V DEIφ sin θ (21)

The toroidal current density Jφ is plotted in (a), and is

negative. The wall current Jwallφ is plotted in (b). The

horizontal axis is θ/(2π), where θ is the angle about
(R,Z) = (0,0), and the vertical axis is φ/(2π). Jwallφ

is maximum and positive at θ = π/2, at the top of the
wall, and minimum and negative at θ = 1.4π, near the
bottom.
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Conclusions

• Wall force is not dominated by vn boundary condition

– most important is γτwall

• Sheath boundary condition is compatible with Dirichlet

– plasma absorption in wall is via v‖

• relation of toroidal variation of toroidal current was revisited

– verified that toroidal current variation is proportional to VDE displacement

– It can not be caused by Hiro current when toroidal current does not touch
wall.

– n > 0 wall current is opposite in sign to the toroidally varying plasma cur-
rent.

– n = 0 wall current closest to the plasma is opposite in sign to plasma
current.
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