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Summary 
• Last Fall I presented a talk at the CEMM meeting “explaining” a self-organized 

stationary state that can occur in tokamaks 

 

• That explanation involved an unstable interchange mode flattening the 
temperature profile  which in turn keeps the current from peaking. 

 

• However, since then we learned that experimentally, (on DIII-D),  this 
stationary state can exist even when the temperature profile is not flattened 
and when central current drive is applied! 

 

• This led us to widen the parameter regime of our investigation, and we have 
now identified a separate mechanism that keeps the current from 
peaking…even more dominant than temperature flattening in most regions of 
parameter space. 

 

• New mechanism is a nonlinear dynamo: very robust and normally dominant 
over the temperature flattening phenomena 

 

 



3D resistive MHD in torus with source terms 
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Sn(t) volume source adjusted in control loop to keep total # of particles constant 

VL(t) applied at boundary in control loop to keep total plasma toroidal current constant 

 

Series of runs with same  = 0 p/B2 ~ 2% but differing 0 and Se  (proportional) 

 

 ~ 0 (T/T0
)-1/2      || ~ 105        0 ~ 10-6       0 = 180 , 360  , 720 , 1440 

                                                                          (4 3D  cases will be presented + 1 2D) 

VL 

balance in equ. 



0 p/B2 =2% behavior much different from low  

• At low-, plasma kinetic energy (and Te0 and 
q0) undergo periodic oscillations where 
current peaks, reconnection occurs and 
process repeats (sawteeth) 
 

• At 2% , plasma goes into a stationary state 
with large helical flow patterns and ultra-
low magnetic shear with q=1 in center 

Large region in center 
with q = 1  

#  of toroidal transits

#  of poloidal transits
q 



Plotted on top is poloidal velocity stream function U where 
 
On bottom are vectors of poloidal velocity V1,1   

 = 0 
  = 0 +

 900  = 0  +
 1800  = 0 +

 2700 

2

1,1 R U   V

Stationary helical flow pattern persists driven 
by unstable interchange mode 
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Z 

q =1.01 



Comparison of profiles from 2D and 3D 
calculation shows 2 differences 

(1) Central pressure is flattened in 3D calculation compared to 2D 
 

(2) Central q-profiles is less than 1 in 2D, equal to 1 in 3D 

(1) 

(2) 

Volume in 
center with 
q=1 and no 
flux surfaces 

Poincare “field 
line mapping” 
plot of 3D final 
configuration 



Why doesn’t q0 continue to decrease in 3D run*? 

In a stationary state, 
                                                                                                                                       (1) 
 
Generalized Ohm’s law:                                                                                              (2) 
 
In the stationary state, (1)+(2) becomes: 
 
                                                                                                                                       (3) 
 
If we dot B into Eq. (3):            
                                                                                                                                       (4) 
 
If magnetic surfaces exist, and we surface average (4), we get the well-known condition 
that the surface averaged current is completely determined by the resistivity profile: 
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This is satisfied exactly 
in 2D stationary states 
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This is satisfied exactly 
in 2D stationary states 

But, it is not satisfied in 3D in the 
central region!     Why not? 



(1) Central ultra-low 
shear (ULS) region 
with q=1 (and no 
flux surfaces) 

(2) Drives 
interchange 
instability 
producing 1,1V

(3) Produces electric potential 
 1,1 1,1 V B

(5) Also perturbs magnetic field: 
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(4) Also perturbs temperature: 
 
  1,1 1,1

2
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(6) 3+5 produce effective enhanced 
loop voltage in central region: 
 0 1,1 1,1nV    B

(7)  2+4 produce velocity field that 
tends to flatten temperature profile 

 0 1,1 1,1nT T   V

(8 )Axisymmetric (n=0) parallel Ohm’s law is 
modified in two ways that broaden current 

 
   

positive in center, 
flattening current  

resistivity 
profile is 
flattened 

(9) No longer constrained to  
central region approaches minimum 
energy Taylor State                  ULS 

const. J B

J B

• These perturbations will also produce other islands via 
mode coupling, but they do not play a central role 

Basic Physics of self-organized stationary discharge with q0=1 
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(2) Ultra-flat q profile drives interchange instability 
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Plotted is U on one toroidal plane 
(=0)  from a 3D simulation where: 

2

1,1 R U   V

Compare with the unstable 
eigenfunction found in [1] 

[1] Hastie and Hender, NF 28 (1988) p. 585  “Toroidal internal kink stability in tokamaks with ultra flat q profiles” 

Shape of stationary nonlinear code 
velocity stream function agrees well 
with linear eigenfunction. 
 
Almost the same for all values of 0  
-- but amplitude depends on  

q =1.01 

midplane values 



(3) Driven flow from interchange produces electric potential 
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potential  at one toroidal plane
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These 2 large terms 
must almost cancel 

Mid-plane values of individual terms 
making up toroidal electric field (color 
coded) at one toroidal location 

Terms on either side of equal sign 
mostly cancel (but not exactly) 



(4) Velocity field also perturbs temperature and pressure.  
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0o 090o 180o 270o 

High  = 1440  
p ~  0.0009 
 

Low  = 180  
p ~  0.0020 
 

Toroidal derivative of pressure profile at 4 locations 

Pressure profile develops a strong (1,1) component.  It is of a similar 
form but about twice as large for  the low  case as for the high  case 



(5) The toroidal magnetic field is perturbed by the perturbed pressure 
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Perturbed 
pressure causes 
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the toroidal 
field. 
 
Because div B=0 
this causes a 
(1,1) poloidal 
field component 



0 o 180o 

Poloidal flux  is also perturbed:   
• It is dominantly (m,n) = (2,1) due to the 

(2,1) island 
• However, it also has a (1,1) component 

that plays an essential role. 
• The (1,1) component combines with the 

(1,1) velocity to produce a (0,0) voltage.  
 

The poloidal flux  is also perturbed. 

q = 2 

q = 1 

Close up 
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(6) Terms in parallel  Ohm’s law 

2

2

L

L

V

V

 


 


 
      
 

     

B V B J

J B B B

 B

 = 000 o  = 090 o  = 180 o  = 270 o 

White is zero, blue is negative.    Note that in center 
region is negative at all toroidal locations indicating 
a (0,0) component generated non-linearly 

  8

0
~ 7 10

n




 B

 

 

 

0

0

0

( / 2 )

n

L n

n

V



 











 

J B

B

J B B

Toroidally averaged 
midplane values 

Similarly,  B1,1 1,1 term leads to an 
effective voltage along the field in center 

Region in center where 
 
 
allowing q0 to stay at 1. 
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(6b) How can           have a non-zero toroidal average in a volume? B

Now suppose  is a small (1,1) field component resonant with B
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(6c) Magnetic field components that contribute to [B ]n=0 
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(7) Perturbed temperature and velocity flatten n=0 temperature 

The partial flattening of the 
temperature profile due to 
the axisymmetric (n=0) 
component of n V1,1T1,1 

agrees with analysis 

n=0 midplane values 



(8) Parallel Ohm’s law is modified in two ways that broaden current 
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• Similarly,  nonlinear 
processes from 
B1,11,1 produce an 
effective n=0 toroidal 
voltage in the center (as 
needed) to keep q=1 in 
central volume. 
 

• Dashed line is 2D result 
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(9) No longer constrained to                              , central regions in all 3D runs 
approach minimum energy Taylor State with q=1 

const J B

The nonlinear drive that keeps 
the current from peaking  gets 
stronger as q1 from above 
 
This feedback mechanism results 
in an ultra-flat q-profile in center 
with q0 = 1 +   (where  << 1) 

        3D runs (all  values) 
2D run 

Final q-profile in 2D and 3D runs 



Remaining questions: 

• For which range of parameters does this occur? 
 

• Effect of sheared rotation? 
 

• Effect of 2-fluid terms? 
 

• Relation to experiments in ASDEX-U and DIII-D? 



Extra Viewgraphs 



(6a) Effective enhanced toroidal voltage in central region 
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A non-zero (positive) n=0 piece in center 
allows J to be smaller there. 
 Counters current peaking, keeping q0=1 

Because  V x B   exactly, there is a residual  
 V1,1 x B1,1 part that leads to a n=0 voltage in center  



(8a) Toroidal Ohm’s law is modified in two ways that broaden current 
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effective n=0 toroidal voltage coming from the nonlinear term V1,11,1.   
This adjusts the current profile to keep q=1 in central volume. 
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shear (ULS) region 
with q=1 (and no 
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(6) 3+5 produce effective enhanced 
loop voltage in central region: 
 0 1,1 1,1nV    B

(7)  2+4 produce velocity field that 
tends to flatten temperature profile 
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(8 )Axisymmetric (n=0) parallel Ohm’s law is 
modified in two ways that broaden current 
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profile is 
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• These perturbations will also produce other islands via 
mode coupling, but they do not play a central role 
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