

Update on EHO modeling

J. King & S. Kruger (Tech-X);

A. Garafalo, R. Groebner & P. Snyder (General Atomics)

Work supported by the US Department of Energy, Fusion Energy Sciences

Tokamak operation with edge harmonic oscillations (EHO) provides access to a quiescent H-mode regime [Burrell 2012].

- EHO: a small toroidal mode number (n~1-5) perturbation localized to the magnetic separatrix [Burrell et al., PoP 19 056117 (2012) and refs within].
- Particle transport enhanced leading to steady-state pedestal profiles.
- Access to EHO operation regime requires control of the flow profile.
- One of the aims of this work is to ascertain the role of the flow shear.
- In particular, experimental observations indicate that the ExB flow shear is a key component in the generation of EHO [Garofalo et al., NF 51 083018 (2011)].

from Garofalo 2011

The physical mechanisms of EHO are not fully understood.

- Linear MHD calculations suggest EHO may be a saturated kinkpeeling mode partially driven by flow-profile shear [Snyder et al., NF 47 961 (2007)].
- Hypothesis: the saturated mode drives particle and thermal transport to maintain steady state pedestal profiles.
- Why NIMROD?
 - Low-n mode requires global computations
 - Can model realistic x-point geometry
 - Drift stabilization built into model
 - Nonlinear capabilities

ELITE results from Snyder 2007

We analyze DIII-D shot 145098 at 4250 ms while the discharge is ELM free with broadband EHO.

Linear results as of APS-DPP indicate "full" modeling is important.

(shot 145098 with profiles "smoothed" to eliminate the edge current discontinuity)

Results required refinement of techniques to use experimental reconstructions.

- Original method: "Map" equilibrium onto NIMROD grid
- New method: Re-solve Grad-Shafranov equation on NIMROD grid
- This has resolved many issues: edge cases now converge to a result!
- However issues remained:
 - -How to deal with an edge current discontinuity
 - -Difficulty with two-fluid cases with flow

Rest of talk reviews how we resolved those difficulties

Resolving equilibrium critical to enabling convergence in edge cases

Tokamak equilibrium reconstructions typically contain discontinuous current profiles across separatrix

- EFIT: No currents outside of separatrix
 - => Pressure is constant outside the separatrix.
 - => No variation in toroidal flux function
- Data, shown later, typically shows finite gradients on separatrix
- EHO mode particularly troublesom:
 - Large current drive at edge (lives on the peeling boundary).
 - Discontinuity is problematic for FGNIMEQ re-solves.
- Can smooth toe continuity of the derivatives, and a self consistent solution generated.
 - However, the method increases the pressure gradient.
 - Empirically, this leads to high-n modes.

Smoothing example: current and pressure gradient are increased.

Data shows that scrape-off layer has currents

 Experimental reconstruction does not set profile gradienst to zero on the LCFS because they are NOT measured to be zero

- Technical issues:
 - EFIT has discontinuity so we only use part of EFIT data
 - How do we include SOL currents?
 - Result should be as close to possible to known measurements.

Extrapolation of currents to SOL

- Constraints on P, F profiles:
 - At separatrix function should be C1 continuous.
 - Width is an important experimental value: [Eich et al., NF 53 (2013) 093031].
- Possible additional constraints:
 - Make functions C2 continuous: Results in C1 smooth
 J and ¼ profiles (~ to p' and F').
 - Use experimental values if possible

Examples of SOL extrapolation

- Psi=1 defines separatrix
- Width is 3% o Psi inside separatrix
- Enforce C2 smoothness

C2 extrapolation of F and p leads to smooth current profiles.

Currents (and flows) extend into the divertor private region including private flux region

- Force balance is enforced throughout the domain.
- Divertor current limited to less than the ion saturation current [~10⁵ A for this case].
- Should have minimal effects on dynamics

Flow effects are known to be crucial to EHO

ExB and Kpol also need to be extrapolated because the data included only up to separatrix

For the experts:
Using pfile data
from "Osborne
reconstructions"

- Flows use a C1 fit with a specified zero value at the SOL-current-free interface $(\Psi_{\rm jfree})$.
- $\Psi_{\text{ifree}} = 1.03$

Recent modeling focus on full twofluid model with flow cases

- Consistent ordering implies no terms should be dropped
- Can always 'work backwards' to decrease mode sophistication to investigate importance of effects (e.g. flow, FLR terms,...) if desired
- Using shot 145117 instead of 145098 (APS-DPP)

Significant progress on full two-fluid modeling with flow.

- Results are preliminary
- Temporal and spatial convergence studies underway
- Extrapolation does not have large effect on dynamics for linear studies
- Expect much better results for nonlinear simulations

JO int

JOREK results have motivated ITER interest in the EHO

- JOREK results included in recent paper by DIII-D collaborators (A. Garafalo)
- Results are of high visibility within the ITER organization
- Good news: EHO simulations have gained in visibilty

Recent JOREK results need more toroidal resolution

Figure 1 (a) Evolution of the perturbed magnetic energy (n=1-5) as a function of time **(b)** Contour plot of poloidal flux perturbation of the saturated n=1-5 kink/peeling modes from MHD simulations.

- Figure from F. Liu et al., EPS proceedings O5.135
- Only 6 modes in calculation with n=5 most unstable.
- Nonlinear coupling may be significant, but increased toroidal resolution is needed.
- When questioned, they said they have different answer when run with more toroidal resolution

Summary

- Modeling with a fitted SOL eliminates edge current/flow discontinuities
 - Slightly easier to converge for these high current, high T (low dissipative) edge cases
 - Impact on nonlinear cases expected to be more important
- EHO cases for full two-fluid modeling with flow are now working – results preliminary and convergence tests are needed