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x Tokamak operation with edge harmonic oscillations (EHO)
provides access to a quiescent H-mode regime [Burrell 2012].

« EHO: a small toroidal mode number
(n~1-5) perturbation localized to the
magnetic separatrix [Burrell et al., PoP
19 056117 (2012) and refs within].

 Particle transport enhanced leading to
steady-state pedestal profiles.

« Access to EHO operation regime
requires control of the flow profile.

* One of the aims of this work is to
ascertain the role of the flow shear.

 In particular, experimental observations
indicate that the ExB flow shear is a
key component in the generation of
EHO [Garofalo et al., NF 51 083018
(2011)].
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The physical mechanisms of EHO are

not fully understood.

Linear MHD calculations suggest
EHO may be a saturated kink-
peeling mode partially driven by
flow-profile shear [Snyder et al., NF
47 961 (2007)].

Hypothesis: the saturated mode
drives particle and thermal transport
to maintain steady state pedestal
profiles.

Why NIMROD?

- Low-n mode requires global
computations

- Can model realistic x-point
geometry

- Dirift stabilization built into model

- Nonlinear capabilities
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s \We analyze DIII-D shot 145098 at 4250 ms while

the discharge is ELM free with broadband EHO.
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s Linear results as of APS-DPP indicate “full”
\ modeling Is important.

model variation
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(shot 145098 with profiles “smoothed” to eliminate the edge current discontinuity)



xf" Results required refinement of techniques to
\ use experimental reconstructions.

*Original method: “Map” equilibrium onto NIMROD grid
*New method: Re-solve Grad-Shafranov equation on NIMROD grid

 This has resolved many issues: edge cases now converge to a
result!

However issues remained:
-How to deal with an edge current discontinuity
-Difficulty with two-fluid cases with flow

* Rest of talk reviews how we resolved those difficulties



x"' Resolving equilibrium critical to enabling
convergence in edge case

« Enhancement to NIMEQ
[Howell et al., CPC 185
re-solved current 1415 (2014)]
* Permits spatial
convergence where
mapped fields were
sensitive to small-scale
structures.

Makes NIMROD more
robust with (low
resolution) experimental
reconstructions.

Mapped current
(FE calculation)

ey




(L J
g’

Tokamak equilibrium reconstructions typically contain
discontinuous current profiles across separatrix

» EFIT: No currents outside of separatrix
=> Pressure is constant outside the separatrix.
=> No variation in toroidal flux function
« Data, shown later, typically shows finite gradients on separatrix
« EHO mode particularly troublesom:
- Large current drive at edge (lives on the peeling boundary).
- Discontinuity is problematic for FGNIMEQ re-solves.
« Can smooth toe continuity of the derivatives, and a self consistent solution generated.
- However, the method increases the pressure gradient.
- Empirically, this leads to high-n modes.
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Smoothing example: current and pressure
gradient are increased.
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x Data shows that scrape-off layer has currents

« Experimental reconstruction does not set profile gradienst to
zero on the LCFS because they are NOT measured to be
zero
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 Technical issues:

- EFIT has discontinuity so we only use part of EFIT data
- How do we include SOL currents?
- Result should be as close to possible to known measurements.



x Extrapolation of currents to SOL

* Constraints on P, F profiles:

- At separatrix function should be C1 continuous.

- Width is an important experimental value:
[Eich etal., NF 53 (2013) 093031].

 Possible additional constraints:

- Make functions C2 continuous: Results in C1 smooth
J and \ profiles (~ to p'and F').

- Use experimental values if possible



x Examples of SOL extrapolation
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xf" C2 extrapolation of F and p leads to smooth
: current profiles.
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s Currents (and flows) extend into the divertor
private region including private flux region

o Jp |
le+05 '1e+04 * Force balance is
l:59+04 -7.5e+03 enforced through-
Z00m . - out the domain.
scales « Divertor current

2:58+03 limited to less than

the ion saturation
current [~10° A for
| this case].

e Should have
minimal effects on
dynamics
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x Flow effects are known to be crucial to EHO

TEQ = OpxpRé  +EK,(0)B  +Qy,Ré




s ExB and Kpol also need to be extrapolated because
the data included only up to separatrix

ExB rotation (1/s)

~12000075—580 085 000 095 100 1.

Kpol (m/(sT))

0

—-20000¢

-40000¢

—-60000¢

—-80000¢

100000¢

ExB

50000

normalized flux

05

40000¢

30000¢

20000¢

10000¢

—-10000¢

—-20000¢

0]8

pol

/

3000075080 085 090 095 100 1.05

normalized flux

lon diamagnetic rotation (1/s)

e o | For the experts:

ooy [ | Using pfile data

~40000| i from “Osborne

-60000 1 . 1]
reconstructions

-80000¢

-100000}

-120000. data inside

10000 the LCFS )

16000075 —580 085 000 095 100 1.05
normalized flux

 Flows use a C1 fit with a
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x Recent modeling focus on full two-
fluid model with flow cases

« Consistent ordering implies no terms should be
dropped

- Can always 'work backwards' to decrease mode
sophistication to investigate importance of
effects (e.g. flow, FLR terms,...) if desired

« Using shot 145117 instead of 145098 (APS-
DPP)



) §

Significant progress on full two-fluid

modeling with flow.

 Results are

preliminary

« Temporal and

spatial
convergence
studies underway

- Extrapolation does

not have large
effect on dynamics
for linear studies

- Expect much

better results for
nonlinear
simulations



s JOREK results have motivated ITER
interest in the EHO

« JOREK results included in recent paper by DIII-D collaborators
(A. Garafalo)

« Results are of high visibility within the ITER organization

« Good news: EHO simulations have gained in visibilty



s  Recent JOREK results need more

toroidal resolution
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Figure 1 (a) Evolution of the perturbed magnetic energy (n=1-5) as a function of time (b) Contour
plot of poloidal flux perturbation of the saturated n=1-5 kink/peeling modes from MHD simulations.
 Figure from F. Liu et al., EPS proceedings 05.135
« Only 6 modes in calculation with n=5 most unstable.
« Nonlinear coupling may be significant, but increased toroidal resolution is needed.
- When questioned, they said they have different answer when run with more
toroidal resolution



x Summary

- Modeling with a fitted SOL eliminates edge
current/flow discontinuities
- Slightly easier to converge for these high
current, high T (low dissipative) edge
cases

- Impact on nonlinear cases expected to
be more important

- EHO cases for full two-fluid modeling with
flow are now working — results preliminary
and convergence tests are needed
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