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ELM mitigation by external 3D fields

- DIlI-D has demonsirated complete suppression of edge-
localized modes (ELMs) using externally-applied 3D magnetic
perturbations

— Evans, T.E. et al. Nat. Phys. 2, 419 (2006).
— Among others
- Results motivated installation of coils on several machines
— ASDEX Upgrade
— KSTAR
— MAST
— NSTX-U
— ITER (planned)
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Theoretical understanding still incomplete

- Early theoretical work focused on the nature of the applied
vacuum field
— Resonant perturbations at rational surfaces open islands
— Overlapping of islands at edge-pedestal boundary produces
stochastic fields
— Increased transport in stochastic layer maintains pedestal height/
width below ELM stability thresholds
 Recent MHD simulations have demonstrated the importance of
including the plasma response
— |dedlly, resonant fields are completely shielded by plasma currents
— Resistively, resonant fields can be enhanced by tearing
— Non-resonant fields excite kink-like deformations with m>nqg

— Kink and tearing structures can couple to each other
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Screening can shield resonant vacuum field

*  SURFMN-like field decomposition iB.(v) =3, Bun () exp [i (mb — ng)]
« Screening at q=5/2 and g=3 surfaces
 Kink excited near edge Screening

kink
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Tearing can amplify resonant vacuum field

- SURFMN-like field decomposition 6B.(v) =, Bun(¥) exp [i (mf — ng)]
- Tearing at q=7/2 surface
« Kink excited at q=3/2 and q=2 ,

tearing

B, for vacuum at Ay = —90° B,,,, for single fluid at Ay = —90°

-20 -15 -10 -5 0 5 10 15 20
m

OAK RIDGE INSTITUTE FOR
\ ) SCIENCE AND EDUCATION 0:0 GENERAL ATOMICS
n'"Zd Managed by ORAU for DOE



External field coils on ASDEX Upgrade

- Two rows of eight in-vessel
saddle coils

 Toroidal mode number of
perturbations up to n=4

« For n=2 fields, the differential
phase angle (AKA phasing)
can be varied between
upper and lower coils sets

- Agp — ¢up — leow
— Varies the magnetic pitch
angle of the applied field

— Affects coupling of resonant

and non-resonant fields Lower B-— "

coils x 8
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ELMs are mitigated by perturbations on ASDEX Upgrade

 Peak divertor heat loads decrease

» Electron density decreases
Suttrop, W. et al. EX/P1-23. IAEA FEC 2014.
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Phasing affects the magnitude of ELM mitigation

- Density and ELM frequency are modulated by phasing
- Strongest mitigation at minimum density

Suttrop, W. et al. EX/P1-23. IAEA FEC 2014.
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MHD simulations of ASDEX Upgrade shot 30835

« Good ELM mitigation observed with n=2 fields in 30835 and
similar shots

* Four phasings have been studied with MARS-F and VMEC

— Ap=230° : Optimum vacuum resonance

— Ap=90° : Strongest ELM mitigation

— Ap = —90° . Classical, non-stationary ELM-free phase

— Ap = —150°: Optimum non-resonant field (ELM mitigation observed)
« We've used M3D-C' to examine this shot

— Time-independent analysis

— Six equally-spaced phasings from -150 to 150

— Not quantitative validation work
Not comparing to measured field data
Only examining qualitative trends/correlations
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Key parameter varied

- Two safety factor profiles
— Same shot, different equilibrium reconstructions
— gp<l: Unstable 1/1 and 2/2 modes
— qp>1: Stable equilibrium
- Single- vs. two-fluid
— Single-fluid sensitive to ion rotation profile
— Two-fluid allows for separate ion and electron rotation

- Superconducting vs. resistive wall
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Safety factor profiles

Safety Factor
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Pressure profiles
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- We'll often look at ¢ ~ 0.93

— Near top of pedestal
— Very close to g=7/2 surface
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Rotation profiles
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Domains used

Superconducting wall Resistive wall
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Metrics examined

Island overlap width
— ¢ distance from edge to first location where islands don’'t overlap
— Generally a discontinuous function

¢m+1+zﬁm) _ 10(mr)+w(m)
2 2 wm—l—l_wm

Chirikov parameter: o (

6B, |’

— At pedestal top: ¢ ~ 0.93
— Incore: ¢ ~ 0.12

— Total integrated

° an
— Full SURFMN-like plots
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- Phasing dependences of island overlap and Chirikov parameter
— Little difference between single-fluid and two-fluid
— Generally do not correlate with ELM suppression
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Island overlap widths

Island overlap width for high q, and resistive wall
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Chirikov parameter at pedestal top

Chirikov parameter for high q, and resistive wall
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- Total integrated magnetic perturbation
— Dominated by core modes in low-q, cases
— Mixes core and edge modes in high-q, cases
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Total integrated magnetic perturbation for low q,

Total integrated magnetic perturbation squared for low q,
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Magnetic perturbation squared in core for low q 0
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Phasing and relative magnitudes agree well
Poor correlation with ELM suppression
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Total integrated magnetic perturbation for high q,

Total integrated magnetic perturbation squared for high q Magnetic perturbation squared in core for high q
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* Non-negligible contribution from edge modes

- Phasing varies a bit & relative magnitude varies substantially
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*  Magnetic perturbations at pedestal top
— Single-fluid
« Generally do no correlate with ELM suppression
Superconducting wall, low-q, case has peculiar phasing dependence
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Wall type important for single-fluid, low g0 case

Magnetic perturbation squared at pedestal top - 1F, low q,
2 T T T T T

—Vacuum
—SC wall
1.8+ Resistive wall

I

1.6 - -

1.2+ .

0.8+ \

0.6+ -

6|

04+ .

0.2 1 1 L 1 1
—IXO -100 -50 0 50 100 150

Ay T

non-resonant  ELM-free vacuum stfrong
resonant mitigation

OAK RIDGE INSTITUTE FOR

mb SCIENCE AND EDUCATION 0:0 GENERAL ATOMICS
n'"Zd Managed by ORAU for DOE 23



Close, superconducting wall can suppress modes

Resistive wall allows
for enhanced tearing

B,,,,, for single fluid at Ay = —90°
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*  Magnetic perturbations at pedestal top

— Two-fluid
«  Seem to do much better
« Electron rotation suppresses spurious tearing mode at pedestal top
«  Dominated by edge kink-like structure
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Two-fluid cases have different phasing dependence
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Lack of single-fluid rotation allows for spurious tearing

B, for single fluid at Ay = —90° B, for two fluid at Ay = —90°
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Edge kink strongest where ELM mitigation observed

B,,,, for two fluid at Ay = —90° B,,,, for two fluid at Ay = 90°
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Conclusion

- ELM mitigation on ASDEX Upgrade appears to be governed by
non-resonant, kink-like structures in the edge

— Metrics that use resonant fields only fail to capture this
— Magnitude of perturbation at pedestal top does a good job

- Details of equilibrium and physics models are important

— Strong electron rotation and lack of ion rotation highlight
importance of two-fluid effects

« Spurious tearing (possibly driven by core modes?) in single-fluid runs
produces poor correlations with observed ELM mitigation

« Two-fluid effects suppress tearing in edge and allow kink-like structure
to dominate

— Safety factor profiles
« Important in core where profile varies substantially
« Some effect on response magnitude, but not phasing, at pedestal top

— Superconducting wall can suppress physical modes recovered by
resistive wall simulations
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Future work

*  Make direct comparisons to results from MARS-F and VMEC

- Perform quantitative validation with ASDEX Upgrade
experimental results

*  More simulations of ASDEX Upgrade and DIlI-D discharges

— Past DIII-D results already showed importance of electron rotation
«  Wade, M.R. et al. Nucl. Fusion. 55 023002 (2015).
« Varied rotation with co- and counter-NBI

«  ELM suppression observed in shots with zero electron rotation at
pedestal top, allowing for tearing there

« Observed only ELM mitigation in shots where there is electron
rotation in the edge

— Perhaps better ELM mitigation or suppression is/could be
observed on ASDEX Upgrade in shots where electron rotation is
driven in edge®
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 Additional slides
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- Phasing dependences of island overlap and Chirikov parameter
— Little difference between single-fluid and two-fluid
— Generally do not correlate with ELM suppression

- Total integrated magnetic perturbation
— Dominated by core modes in low-q, cases
— Mixes core and edge modes in high-q, cases

*  Magnetic perturbations at pedestal top
— Single-fluid
« Generally do no correlate with ELM suppression
« Superconducting wall, low-g, case has peculiar phasing dependence
— Two-fluid
«  Seem to do much better
« Electron rotation suppresses spurious tearing mode at pedestal top
«  Dominated by edge kink-like structure
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