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Topics	
  

•  Nonlinear	
  MHD	
  simula1on	
  of	
  plasma	
  edge	
  instabili1es	
  find	
  
that	
  ELMs	
  and	
  inter-­‐ELM	
  modes	
  have	
  many	
  similar	
  features	
  

•  Linear	
  eigenmode	
  spectrum	
  compared	
  to	
  small	
  amplitude	
  
nonlinear	
  mode	
  –	
  consistent,	
  large	
  aspect	
  ra1o	
  approxima1on	
  

•  Finite	
  amplitude	
  –	
  nonlinear	
  and	
  higher	
  order	
  aspect	
  ra1o	
  
effects	
  

•  Nonlinear	
  mode	
  structure	
  –	
  first	
  comparison	
  to	
  measured	
  2D/
3D	
  perturba1ons	
  in	
  an	
  edge	
  mode	
  (TECE	
  in	
  inter-­‐ELM	
  mode	
  in	
  
KSTAR)	
  –	
  nonlinear	
  gives	
  much	
  be<er	
  fit	
  than	
  linear	
  
eigenmode	
  



KSTAR	
  inter-­‐ELM	
  mode	
  

•  In	
  KSTAR,	
  	
  the	
  2D	
  and	
  3D	
  structure	
  of	
  edge	
  instabili1es	
  can	
  be	
  
measured	
  at	
  high	
  resolu1on	
  by	
  electron	
  cyclotron	
  emission	
  
imaging	
  (ECEI)	
  of	
  the	
  radia1on	
  temperature	
  	
  TECE	
  [1,2]	
  

•  The	
  inter-­‐ELM	
  mode	
  in	
  KSTAR	
  is	
  a	
  long-­‐lived,	
  finite	
  amplitude	
  
edge	
  instability	
  that	
  exists	
  between	
  ELM	
  crashes,	
  which	
  have	
  
different	
  m,n	
  structure	
  and	
  behavior	
  
–  Unlike	
  ELM,	
  no	
  strong	
  loss	
  of	
  plasma	
  from	
  the	
  edge	
  

•  But,	
  background	
  plasma	
  profiles	
  not	
  well	
  known	
  
•  MHD	
  nonlinear	
  simula1on	
  of	
  approximate	
  equilibrium	
  for	
  

ECEI	
  cases	
  with	
  the	
  M3D	
  code,	
  star1ng	
  from	
  small	
  
perturba1on	
  of	
  all	
  n≤23	
  nonzero	
  toroidal	
  harmonics	
  
–  Parameters	
  S=107,	
  μ=10-­‐5,	
  κ⟘=Dn=10-­‐5	
  ,	
  effec1ve	
  κǁ‖=3RovA	
  
–  Density	
  profile	
  not	
  measured;	
  simula1on	
  uses	
  uniform	
  density	
  n≡no,	
  

solves	
  p	
  equa1on	
  with	
  the	
  thermal	
  conduc1vi1es	
  



KSTAR	
  7328	
  equilibrium	
  

•  Equilibrium	
  for	
  edge	
  mode	
  study	
  t=4.400	
  s	
  –	
  added	
  edge	
  p-­‐
pedestal	
  and	
  bootstrap	
  current	
  (A.	
  Pankin,	
  2014)	
  

-­‐RJφ	
  

p	
  ψ	
   Plasma:	
  
	
  
a=0.457m,	
  Ro=1.82m	
  
BT=1.017	
  T,	
  Ip=750	
  kA	
  
PNB~3	
  MW	
  
q95~5	
  
βo=1.72%,	
  ⟨β⟩=0.384%	
  
τA=1.6×10-­‐7	
  s	
  



Linear	
  eigenmode	
  spectrum	
  

•  Linear	
  resis1ve	
  MHD	
  eigenmodes	
  from	
  BOUT++	
  (M.	
  Kim,	
  POSTECH)	
  
–  Uniform	
  resis1vity	
  S=107	
  and	
  S=108;	
  Black:	
  Spitzer	
  resis1vity	
  (T/To)-­‐3/2	
  

–  Green:	
  with	
  ion	
  diamagne1c	
  correc1on	
  γMHD–ω*i/2.	
  	
  Peak	
  γ	
  at	
  n=12.	
  
•  M3D	
  (Spitzer,	
  S=107)	
  at	
  two	
  spa1al	
  resolu1ons	
  (red=lower,	
  blue=higher).	
  

Smoothing	
  mode	
  at	
  top/bo<om	
  of	
  plasma	
  increases	
  γ.	
  

Toroidal	
  mode	
  number	
  n 

Gr
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  ra
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  γ
τ A

 



•  Lez:	
  ECEI	
  perturbed	
  δTECE	
  with	
  n≃10	
  (from	
  [2],	
  KSTAR	
  7328	
  at	
  t=7.917)	
  
•  Middle	
  &	
  right:	
  Non-­‐axisymmetric	
  p	̃
  from	
  MHD	
  simula1on	
  at	
  S=107	
  

(Spitzer),	
  with	
  dominant	
  n=13,14.	
  	
  Middle	
  –	
  same	
  poloidal	
  phase	
  as	
  ECEI.	
  
Right	
  –	
  at	
  the	
  φ	
  with	
  maximum	
  difference	
  in	
  m.	
  Dashed	
  lines	
  are	
  plasma	
  
edge.	
  Total	
  p	
  contours	
  0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01,	
  0.001,0.0001;	
  dashed	
  1.e-­‐05	
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Inter-­‐ELM	
  mode	
  3D	
  structure	
  

•  Views	
  on	
  poloidal	
  planes	
  Δφ=22.5	
  deg	
  apart.	
  	
  
Orange	
  line	
  shows	
  same	
  filament.	
  
–  Black	
  contours	
  show	
  equilibrium	
  pressure	
  

•  Right:	
  3D	
  asymmetry	
  due	
  to	
  mul1ple	
  toroidal	
  
harmonics,	
  especially	
  low	
  n=1,2,3	
  

ψ	
  

p	
  



Mode	
  does	
  not	
  resemble	
  perturba1on	
  of	
  the	
  original	
  equilibrium	
  	
  	
  	
  

•  Mode	
  changes	
  near-­‐edge	
  axisymmetric	
  equilibrium.	
  Plasma	
  expands	
  slightly.	
  
•  (Lez)	
  Non-­‐axisymmetric	
  pressure	
  (color);	
  black	
  contours	
  show	
  total	
  pressure.	
  
•  (Right)	
  Perturbed	
  pressure	
  p̃≡p-­‐peq	
  defined	
  from	
  the	
  original	
  equilibrium	
  pressure;	
  

Posi1ve	
  p̃	
  is	
  narrow	
  and	
  concentrated	
  at	
  the	
  1ps	
  of	
  the	
  ballooning	
  fingers,	
  just	
  
outside	
  	
  original	
  plasma	
  edge.	
  
–  ECEI	
  synthe1c	
  signal	
  response	
  func1ons	
  will	
  broaden	
  narrow	
  signals	
  [4]	
  



Linear	
  eigenmode	
  p	̃
  may	
  resemble	
  ECEI	
  δTECE	
  

•  Lez:	
  experimental	
  ECEI	
  perturbed	
  TECE	
  with	
  n≃8	
  (t=4.36s,	
  M.	
  Kim,	
  NF	
  (2014)	
  [4])	
  
	
  	
  	
  	
  	
  	
  	
  DIFFERENT	
  EQUILIBRIUM	
  PROFILES	
  than	
  M3D	
  case!	
  
•  Middle	
  &	
  right:	
  p	̃
  from	
  BOUT++	
  resis1ve	
  MHD	
  	
  linear	
  eigenmode	
  with	
  n=8.	
  	
  
•  Middle:	
  raw	
  eigenmode.	
  Δr=2	
  cm.	
  Right:	
  Synthe1c	
  ECEI	
  signal	
  of	
  the	
  linear	
  

eigenmode,	
  including	
  system	
  noise.	
  Matches	
  experimental	
  signal	
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Figure 6. For comparison, figure 4(c) is plotted again. (a) n = 8 ELM mode from BOUT++ simulation for KSTAR #7328, t = 4.36 s.
(b) Synthetic image from the simulation without system background noise (same as figure 4(c)). (c) Synthetic image with system
background noise where the signal level of the mirror image of the ELM outside the separatrix is comparable to the system noise level (d)
The measured 2D image at t ∼ 4.36 s from toroidally different positions separated by 1/16 of torus with respect to figure 1(b). The observed
2D image is replicated through synthetic image reproduction.

is the electron temperature [31]. The emission at a specific
frequency ω is the sum of all downshifted emission from
" to ω. Therefore, the radial response function of each
channel can be an integration of this emissivity profile within
the channel frequency bandwidth considering the effect of
plasma absorption. The detailed process in the construction
of the radial response function is based on Hutchinson [31]
and Bekefi [32]. The radial response functions of the ECEI
mid-plane channels are shown in figure 4(a). The radial
channels of the KSTAR ECEI system have a finite frequency
window (FWHM bandwidth is ∼0.6 GHz and the −30 dB
point is ∼0.84 GHz), where the frequency difference between
the adjacent channels is ∼0.9 GHz [12]. Here, a simple
rectangular shape with 0.7 GHz width for the band-pass
response is employed to reduce the computation time in the
calculation of the radial response function. As the relativistic
broadening effect is included, each radial response function
is changed from the rectangular shape (dotted line) to the
corresponding coloured solid line, as shown in figure 4(a).
Although the response functions of the adjacent channels
overlap due to the relativistic broadening, the response
functions of the channels in the optically thick and grey regions
are spatially localized for edge plasma parameters in general.
However, in the case of the channels outside the separatrix
(R ! 224), the emission from the cold resonance position
corresponding channel frequency bandwidth is dominated by
the downshifted signals because the region outside of the
separatrix is optically thin in general. Figures 4(b) and (c)
show two different synthetic images from BOUT++ simulation
results from 24 (vertical) ×10 (radial) virtual synthetic ECEI
diagnostic channels, which are based on the dotted and solid
radial response curves in figure 4(a), respectively. In both
cases, the radial mode size is increased; this increase is due
to the interpolation to fill the space between channels in the
dotted response curve (figure 4(b)) and the interpolation and
channel overlap in the solid response curve (figure 4(c)). In
particular, when the relativistic down-shift is considered, the

radial mode size is comparable to that of the observed image
(figure 1(b)). The downshifted mirror image of the ELM is
clearly shown outside of the separatrix (figure 4(c)). A similar
mirror image outside the separatrix is also reconstructed in the
DIII-D system [15].

In the measured images, the radial resolution of the ECEI
system depends on the radial width of the response function
and the relative position of the ELM structure to the response
function. Synthetic images for three different radial widths
of the mode without interpolation are illustrated in figure 5.
They are wR ∼ 0.4 cm (delta function like), wR ∼ 2 cm and
wR ∼ 4 cm. When the radial width of the mode is much
narrower than that of the radial response function (∼2 cm in
the ECEI setting described in figure 4(a)), one pixel at a radial
position gives a meaningful signal as shown in figure 5(d).
In the other two cases, more than one pixel detects the mode
as shown in figures 5(e) and (f ). As the width of the radial
mode is increased, the number of pixels which detects the mode
and the integrated emission of these pixels also increase. In
addition, distinctively different patterns of raw data at both
vertical edges of the ECEI view (green circles in figure 5)
are shown for each case and this is due to the curved mode
structure with different radial widths. In order to improve
the radial resolution further, the bandwidth and separation
frequency have to be adjusted and an optimum arrangement
will be considered as the net system sensitivity is improved.

To generate a realistic image, the system background noise
is considered during the process of synthesis (figure 6(c)).
Because the signal level of the phantom image is comparable
to the system noise level, the phantom image of the ELM
structure is difficult to recognize. In addition to the mixture of
downshifted spectra and system noise, scattered and reflected
emissions by in-vessel components make the interpretation of
the signals outside the separatrix much more complicated in
real situation. For these reasons, we only interpret the signals
within the separatrix. The observed ELM image (figure 6(d))
is successfully reproduced by synthetic reconstruction based

5
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Lowest	
  n	
  harmonics	
  grow	
  from	
  mode	
  coupling	
  

•  Time	
  history	
  of	
  ini1al	
  growth	
  to	
  the	
  ELM	
  crash	
  for	
  the	
  main	
  
n=10,13	
  harmonics,	
  next-­‐to-­‐highest	
  n=22,	
  and	
  lowest	
  
n=1,2,3	
  for	
  poloidal	
  magne1c	
  flux	
  and	
  density	
  

•  Different	
  growth	
  rates	
  within	
  general	
  exponen1al	
  growth	
  
•  Lowest-­‐n	
  grows	
  later	
  and	
  faster,	
  consistent	
  with	
  origin	
  from	
  

mode-­‐bea1ng	
  of	
  higher	
  n	
  (n=1	
  also	
  follows	
  strong	
  n=22)	
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Small	
  amplitude,	
  early	
  1me	
  

•  Spectra	
  at	
  early	
  1me	
  t=39.3	
  (very	
  small	
  amplitude)	
  
•  Lez:	
  MHD	
  variables	
  (scaled).	
  	
  Right:	
  Radial	
  momentum	
  terms	
  
•  Highest	
  harmonics	
  n=21-­‐23	
  are	
  largest,	
  in	
  agreement	
  with	
  

the	
  linear	
  ballooning-­‐like	
  growth	
  rate	
  spectrum	
  
•  Momentum	
  full	
  M	
  ≃	
  lowest	
  order	
  in	
  large	
  aspect	
  ra1o	
  MLAR	
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Momentum	
  –	
  evolu1on	
  of	
  harmonics	
  and	
  vθ	
  

•  Rate	
  of	
  change	
  “Energy”	
  for	
  full	
  MHD	
  M	
  that	
  is	
  contained	
  in	
  
harmonics	
  larger	
  than	
  n	
  	
  (∑i=nn_max|Mi|2,	
  scaled	
  to	
  unity)	
  

•  Shizs	
  from	
  high	
  to	
  moderate	
  harmonics	
  during	
  the	
  ini1al	
  growth	
  
of	
  ELM	
  crash;	
  strong	
  loss	
  of	
  higher	
  n	
  during	
  outboard-­‐side	
  healing	
  
azer	
  crash	
  

•  Poloidal	
  flow	
  genera1on	
  for	
  finite	
  amplitude	
  edge	
  instabili1es	
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DIII-­‐D	
  Large	
  ELMs:	
  GEQDSK	
  inaccuracy	
  
•  M3D	
  mesh,	
  using	
  a	
  improved	
  

interpola1on	
  of	
  	
  the	
  GEQDSK	
  
psirzIRi,Zj]	
  based	
  on	
  	
  bi-­‐cubic	
  
splines	
  	
  

•  Separatrix	
  curve	
  from	
  GEQDSK	
  	
  
•  Mismatch	
  to	
  the	
  	
  rest	
  of	
  the	
  

simula1on	
  grid,	
  which	
  is	
  
interpolated	
  from	
  psirz(Ri,Zj)	
  
and	
  	
  the	
  limiter	
  curve	
  	
  (=	
  sim.	
  
outer	
  boundary)	
  ➝	
  uneven	
  
radial	
  spacing	
  on	
  outboard,	
  
near	
  midplane	
  (similar	
  below	
  
midplane)	
  

•  129x129	
  EFIT	
  output	
  (even	
  
257x257	
  barely	
  resolves	
  
pedestal,	
  JBS	
  layer	
  

•  Worse	
  at	
  finer	
  grid	
  spacing	
  
•  Causes	
  numerical	
  instability	
  

and/or	
  larger	
  ELM	
  growth	
  
rates	
  

midplane	
  

M3D	
  (R,Z)	
  mesh	
  on	
  outboard	
  side	
  



Summary	
  

•  Nonlinear	
  MHD	
  simula1on	
  of	
  plasma	
  edge	
  instabili1es	
  find	
  
that	
  ELMs	
  and	
  inter-­‐ELM	
  modes	
  have	
  many	
  similar	
  features	
  

•  Linear	
  eigenmode	
  spectrum	
  compared	
  to	
  small	
  amplitude	
  
nonlinear	
  mode	
  –	
  consistent,	
  close	
  to	
  large	
  aspect	
  ra1o	
  

•  Finite	
  amplitude	
  -­‐	
  nonlinear,	
  and	
  aspect	
  ra1o	
  effects	
  give	
  
different	
  mode	
  

•  Nonlinear	
  mode	
  structure	
  –	
  first	
  comparison	
  to	
  measured	
  2D/
3D	
  perturba1ons	
  for	
  an	
  edge	
  instability	
  (TECE	
  in	
  inter-­‐ELM	
  
mode	
  in	
  KSTAR)	
  –	
  nonlinear	
  gives	
  much	
  be<er	
  fit	
  than	
  linear	
  
eigenmode	
  

•  Poloidal	
  “zonal	
  flow”	
  for	
  edge	
  instabili1es?	
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  12-­‐14,	
  2015	
  in	
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