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Motivation is Verification of Forced 
Magnetic Reconnection Physics

• RMPs modify the magnetic field at the top of the H-mode 
pedestal; additional work is needed to understand their role in 
suppressing or mitigating ELMs

• Benchmarking of forced magnetic reconnection (FMR) with 
NIMROD and M3D-C1 is needed to understand general linear 
and nonlinear responses to applied fields

• FMR in slab and cylindrical  
geometry is well understood  
analytically [e.g. Hahm and  
Kulsrud (1985)] and numerically; 
verification exercise with  
NIMROD is necessary before  
moving on to toroidal problem
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We Use the NIMROD Code to Solve 
the Resistive-MHD Equations

• NIMROD capable of solving  
extended-MHD equations
• Assume 𝛽 = 0 in the  

following 
• Semi-implicit leapfrog  

time evolution is used:
• Hold equilibrium fields  

constant and evolve perturbation fields 
• Uses 2-D C0 finite elements with Fourier decomposition in 

third dimension:
• Expansion coefficients of perturbation fields are complex
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Many Parameters Are Specified For  
NIMROD Modeling

• R, Z, ɸ coordinates with (LR, LZ) = (2*a = 2 m, 0.2 m),  
(nR,nZ) = (96,6), and FEs with a polynomial  
degree of 4

• 2-D reconnection with symmetric Z direction
• Grid packing at boundary and rational surface  

with minimum grid (node spacing)  
≈ 7.5×10-3

 m (1.9 × 10-3
 m) 

• Periodic length of Lɸ = 2 m

• nɸ = 1 linear calculations have kɸ ≣ 2𝜋nɸ/Lɸ = 𝜋 m
-1

• Bz,0 = 10 T, Bɸ,0 = 0.1 T, ∆′ = -2𝜋 

• 𝜏A ≣ a*(Bɸ,0
2/𝜇0𝜌)1/2

 = 1.45×10-6
 s ➛ dt = 10-6

 s 

• Initial simulation uses 𝜂/𝜇0 = 2 m
2/s, 𝜈 = 0.002 m

2/s  
➛ P ≣ 𝜏R/𝜏V 

= 10-3 [𝜏R ≣ a
2/(𝜂/𝜇0), 𝜏V ≣ a

2/𝜈] , S ≣ 𝜏R/𝜏A 
= 3.45×105  

➛ Linear layer width ~ a*S-1/3P1/6 = 4.5×10-3
 m, calculated island half-width ~ 1.05×10-3 m
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Paradigm Is Taylor’s Slab Model Problem: 
Apply Edge Magnetic Field Perturbation
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Boundary Perturbation Is Implemented 
In Two Edge Grid Points

• Solve vacuum (no plasma, currents)  
boundary-value problem in edge region
• ∇2𝜑1(R,𝜙) = 0 for perturbed B⊥,1 = -∇𝜑1

• Two outermost grid cells of width Δ
• BR,1(a,𝜙) = -iBnwξ(𝜙) , BR,1(a-Δ,𝜙) = 0

• Bnw is the normal component of the  
magnetic field at the radial boundary


•  

• HK 𝛿 is consistent with 𝛿 = Bnw/B𝜙,0k𝜙
• Initial linear simulation uses  

Bnw = 10-6 T (𝛿 ~ 3.2×10-6 m), which  
avoids nonlinear forcing
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NIMROD Linear Results for Small Perturbation 
(Bnw = 10-6 T) Are Close To HK Predictions

• Clearly observe overshoot in BR,1(R=0)  
evolution in top plot at 𝜏T = 3.05×10-3 s
• BR,1(R=0,t) ~ t1.22 (HK ~ t5/4) for t ≪ 𝜏T 

• For sheet pinch with constant current,  
HK showed that force balance reduces  
to vacuum boundary-value problem
• B⊥ = ẑ×∇ψ and BC ψ1(R=a) = Bnw/k𝜙
• Solution for system with ψ1(R=0) ≠ 0  

(i.e. resistive evolution):  
 

• BR,1(𝜙=0) = -iBnw*[cosh(k𝜙R)/cosh(k𝜙a)]
• Predict Im[BR,1(R=0)] = -8.63×10-8 T,  

measure -8.85×10-8 T
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Equilibrium Flow Introduces Field 
Screening Physics

• Flows generate eddy currents that suppress tearing process
• Scaling with magnitude of flow is  

highly dependent upon layer physics  
[e.g. Fitzpatrick, POP (1998)]

•  

• Bnorm is BR,1 at rational surface

• Form of ∆(𝜔) depends on relative  
values of Prandtl number P = 𝜏R/𝜏V  
and normalized “slip frequency” Q = 𝜏AS1/3𝜔, where 𝜔 = k𝜙v𝜙
• P-Q space splits into 4 regimes: Resistive-Inertial (RI),  

Visco-Resistive (VR), Visco-Inertial (VI), and Inertial (I)
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VR Regime Asymptotic State Agrees 
Well With Fitzpatrick Predictions

• With P = 1 and v𝜙,0 = 103 m/s : Re(Q) = 0.319  
➛ In the VR regime

• VR regime has ∆(𝜔) = i 2.104 𝜔 𝜏A a
-1S2/3P1/6

• 𝜔 ~ v𝜙 is complex, with imaginary  
component due to Fourier decomposition 


• Theory predicts Re[BR,1(R = 0)] = -1.16×10-8 T  
and Im[BR,1(R=0)] = -1.54×10-9 T


• Numerically within ~ 25% of predictions

• Increasing v𝜙,0  parallel to B𝜙,0 decreases  
the magnitude of the normal field at the  
rational surface (smaller islands) 
• Also shifts island along direction of flow   
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Scaling with Flow Follows  
Fitzpatrick’s Results

• Magnitude (top) and  
phase (bottom) of normal  
field as equilibrium flow is  
varied in the VR regime
• Blue data correspond to  

analytically predicted values 
from Fitzpatrick POP (1998)

• Green data correspond to  
numerically observed values

• NIMROD slightly over predicts  
the magnitude and under  
predicts the phase shift as the  
flow is increased

10

N
or

m
al

 F
ie

ld
 A

m
pl

itu
de

 (T
)

0.00E+00

2.25E-08

4.50E-08

6.75E-08

9.00E-08

N
or

m
al

 F
ie

ld
 P

ha
se

 (r
ad

)

0.00E+00

4.00E-01

8.00E-01

1.20E+00

1.60E+00

vphi,0
0.00E+00 2.50E+02 5.00E+02 7.50E+02 1.00E+03



Larger Amplitude Boundary Perturbation 
(Bnw = 10-4 T) Causes Nonlinear Forcing
• Nonlinear simulations keep n𝜙 = 0 - 5

• Increased polynomial degree and edge  
viscosity to improve convergence

• Turned off density evolution
• Top: Bnw = 10-8 T

• Resembles linear simulations
• Early growth scales as ~ t

1.15 (HK ~ t5/4)
• Bottom: Bnw = 10-4 T

• n𝜙 = 1 mode evolution (blue trace)  
consistent with boundary-driven  
Rutherford evolution: 

• Early growth as ~ t
0.845 (HK ~ t

2/3)
• Higher order modes (e.g. n𝜙 = 2 red trace)  

observed on same scale
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Nonlinear Driving Forms Large Island
• For Bnw = 10-4 T and v𝜙,0 = 0,  

HK predicts a saturated  
island half-width of 
  
        

• Appropriate for a visco- 
resistive linear layer width  
of a*S-1/3P1/6 = 4.51×10-3 m

• Observed island is ~ 50% wider than predicted
• Note the different scales of the R, Z axis distort the X-null 

and island structure appearance
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Nonlinear Electromagnetic and Viscous 
Force Balance Gives Rise to Bifurcation

• Integrating J×B and 𝜌𝜈∇2v over 𝜙 and radially about the 
rational surface gives n = 0 electromagnetic and viscous forces  
[e.g. Fitzpatrick NF (1993)] 
 
 
 

• Force balance gives cubic relation in 𝜔 
 
 
 
where                            and

• Bifurcation when initial angular frequency exceeds 
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Force Balance Bifurcation is Numerically 
Observed in Asymptotic States

• Analytic, integrated, nonlinear  
EM (green) and viscous (blue)  
forces plotted in top figure
• Both figures shown for  

v𝜙,0 = 103 m/s > v0,crit = 6.92×102 m/s
• Two stable (and one metastable) 

solutions exist, high and low slip
• Bottom figure shows cubic  

force balance equation in blue  
overlaid with asymptotic  
NIMROD results in red
• Simulations clearly show bifurcation
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High/Low Slip Solutions Have  
Reduced/Typical Islands

• High slip solution (top plot) has  
Bnw = 10-4 T and low slip solution  
(bottom plot) has Bnw = 2 × 10-4 T
• Predicted island  

half-widths given by
• Takes flow screening into account
• Predict 4.54 × 10-3 m and  

1.44 × 10-2 m, respectively
• Measured island half-widths of 

6.17 × 10-3 m and 2.07 × 10-2 m
• Also observe flow shifting of island
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FMR Simulations are Underway in the 
Cylindrical Geometry

• Specify q-profile according to Furth,  
Rutherford, and Selberg (1973) form

•  

• q0 = 2.02, r0 = 0.65, 𝜆 = 2
• r(q=3) = 0.681 m, 𝝆(q=3) = 0.796

• P = 1 and similar S to slab case
• Follow same procedure as in slab  

geometry to prescribe edge  
boundary perturbation
• Initialize (m,n) = (-3,1) perturbation  

in linear n=1 simulations
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Resonant Perturbation Field in Cylinder 
Evolves Similar to HK Case 

• Bnw = 10-6 T edge perturbation  
triggers FMR when resonant 
with q = 3 surface (blue trace)
• Plotting field at the rational  

surface on the outboard midplane
• Cross-helicity case with m = 3  

(green trace) diffuses inward  
on longer timescale

• Resonant field is  
amplified at rational  
surface with zero  
equilibrium flow
•
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Flow Screening Qualitatively Agrees  
with Fitzpatrick Predictions

• With v𝜙,0 = 103 m/s, observe 
Re[Br(𝜃=0)] is decreased  
(green trace) and Im[Br(𝜃=0)]  
is now nonzero (red trace)

• Flow screens and shifts Br


• As in slab, we are in VR regime

• Theory predicts  

Re[Br(𝜃=0)] = 1.03 × 10-6 T and Im[Br(𝜃=0)] = -1.53 × 10-6 T 
• Note figure has ABS[Im(Br)]

• Hypothesize discrepancy due to value of Δ′ used in 
calculations
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Future Direction Of This Research

• Trigger bifurcation in slab by increasing edge field 
magnitude slowly compared to system evolution
• Observe hysteresis by slowly decreasing edge field

• Linear and nonlinear flow-scaling in a cylinder
• Torque balance bifurcation 

• Linear and nonlinear flow-scaling in a torus with the 
addition of two-fluid effects

• Benchmarks between NIMROD and M3D-C1 
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Conclusions
• Verified Hahm and Kulsrud analytical model of linear  

and nonlinear evolution of Taylor’s problem by applying  
spatially-varying, boundary-normal magnetic field in 
NIMROD simulations

• Verified flow-screening effects consistent with Fitzpatrick 
model for linear slab, notably in the visco-resistive regime 
typical for tokamak H-mode pedestals

• Verified nonlinear force balance bifurcation consistent  
with Fitzpatrick model, that gave rise to high and low slip 
solutions

• Preliminary numerical study of FMR in cylindrical geometry 
is underway 
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Hahm & Kulsrud (HK) Slab Model  
Provides Paradigm Problem

• Taylor’s problem: resistive sheet pinch  
with B = BTẑ + (B0/a)xŷ
• Boundaries perturbed by x = ± [a - 𝛿cos(kyy)]

• Tearing creates magnetic islands [ψ(x=0) ≠ 0]  
with finite resistivity 

• For resistive phase t ≪ 𝜏Res ≣ 𝜏AS1/3
,  

ψ(x=0,t) ~ t2

• For tearing phase t ~ 𝜏T ≣ 𝜏AS3/5
,  

ψ(x=0,t) ~ t5/4 for t ≪ 𝜏T and  
ψ(x=0,t) ~ t-5/4 for t ≫ 𝜏T

• Nonlinear driving when 𝛿/a ≥ S-4/5

• For t ≪ 𝜏NL ~ (𝛿/a)1/2𝜏R, ψ(x=0,t) ~ t2/3

• For t ≫ 𝜏NL, ψ(x=0,t) ~ tanh2(t/𝜏NL)
21



Time Asymptotic State Of Linear  
Results Agree with HK

• For sheet pinch with constant current  
in the symmetry direction, HK showed  
that force balance reduces to  
vacuum boundary-value problem
• B⊥ = ẑ×∇ψ and BC ψ1(R=a) = Bnw/k𝜙
• Solution for system with ψ1(R=0) ≠ 0  

(i.e. resistive evolution):  
 

• BR,1(𝜙=0) = -iBnw*[cosh(k𝜙R)/cosh(k𝜙a)]
• Re[BR,1] ~ 0

• B𝜙,1(𝜙=0) = Bnw*[sinh(k𝜙R)/cosh(k𝜙a)]
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Parametric Results Agree with HK
• Varying Lundquist number gives  

outstanding agreement with analytical  
predictions
• Time at maximum amplitude of  

BR,1 (blue data) coincides with  
𝜏T (green data)
• Traces lie on each other 

• Varying Bnw has no effect on time of  
maximum amplitude of BR,1

• Asymptotic value of BR,1(R=0) is  
independent of S as expected
• Green data are HK predictions, blue  

data from NIMROD simulations  
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Alfvén Resonances Emerge for  
Increased Flows

• With v𝜙,0 = 104, Re(Q) ~ 3.19 and  
we are in the I regime (shown in  
the top figure)
• Compared to the case with  

v𝜙,0 = 103 (bottom figure), there  
are now two negative peaks  
in Re(v𝜙,1)

• Due to an Alfvén Resonance
• Where (k·v)2 = (k𝜙vA,𝜙)2
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• Alfvén resonances creates smaller 
scale structure within the layer

• While top plot shows  
Re[BR,1(R=0)] ≠ 0, as v𝜙,0 is  
increased the normal field at the  
rational surface asymptotes to zero
• Bottom plot shows that the  

imaginary component of the  
normal field changes sign at  
the rational surface

• Essentially no tearing (reconnection)  
in this regime

Inertial Regime Has a Different 
Asymptotic State From the VR Regime
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