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A verification effort is underway as part of a larger effort to model the

nonlinear evolution of the giant sawtooth.
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In tokamaks sawteeth result from
the nonlinear evolution of a n =1
mode.

The sawtooth cycle is
characterized by a slow build-up of
the core n and T, followed by a
rapid crash.

Two fluid drifts and kinetic effects
temporarily stabilize the kink
leading to larger but less frequent
giant sawteeth.

Giant sawteeth are a concern for
modern tokamaks and ITER.
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Sawteeth are periodic relaxation events of the core plasma.
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Modeling of the giant sawtooth requires an accurate representation of

multiple two fluid effects.

o Different two fluid effects modify the stability of the internal kink in
opposing ways.

o Diamagnetic drifts reduce the linear growth rate when the diamagnetic
frequency is comparable to the MHD growth rate [Ara et al., 1978].

o Finite electron compressibility allows the electrons and ions to decouple and
increases the linear growth rate in the semi-collisional and collisionless
regimes [Zakharov and Rogers, Phys Fluids B. 4, 1992].

o Electron inertia increases the growth rate in in collisionless regime.

@ We present the results of a verification effort to test NIMROD's ability to
capture the different two fluid effects for the 1/1 kink in a screw pinch
equilibrium.

e NIMROD accurately captures the transition from ideal to resistive kink in
resistive MHD.

e NIMROD accurately captures the increased growth rate in the semi-collisional
regime in the absence of diamagnetic drifts.

o There is a significant discrepancy between NIMROD and the analytic theory
of Zakharov and Rogers when drifts are included.
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A verification effort is underway as part of a larger effort to model the

nonlinear evolution of the giant sawtooth.

© Review of existing theory
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The ideal MHD 1/1 kink is characterized by a “top hat” radial
displacement.

@ The Euler-Lagrange equation for a screw pinch is:

W w de\? )
f~rBj(1—q)

B; 2 r* duop
g~ ((1-q —2(1+9)(1—q)) +245 22

@ The quantity g is negative for |q| < 1.
@ 0W is negative indicating instability for the top hat trial function:

5_{ o for r<rs

o 0 for r>rs
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The dynamics in a thin layer around the discontinuity at the rational
surface determines the linear growth rate.

o Coppi et al. worked out the resistive MHD kink dispersion relation in the
limit of a thin layer [Sov J. Plasma Phys. 2, 1976]

Resistive MHD kink dispersion relation

] 3\ = ’}/TASI/3 and S\h = Ah51/3
Ay = qu,m fo gdr is the normalized ideal MHD growth rate.

o The resistive kink growth rate is v,74 = S/3 (An =0).

@ The Alfven time and Lundquist number are defined relative to the layer:
3= ﬂgf;o q,’zrz, TR = por2/n, and S = Tr/7a.
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The resistive MHD dispersion relation captures the transition from tearing

mode to ideal kink.

Resistive Kink Growth Rate ~r, for A, =2.0e-02.
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@ The ideal MHD growth rate = :\h is recovered in the limit of large 3\;,
(large S).

@ The resistive kink growth rate X = 1 is recover in the limit of 5\;, ~0
(small S).

o Tearing behavior is recovered when M < 0.
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Two-fluid modifications to the internal kink are described by Zakharov and

Rogers inner layer equation [Phys. Fluids B 4, 1992].

The two-fluid kink growth rate, I, is an eigenvalue of the inner layer equation

A — i) /] M(r—iQ.) 2L,
2 e i / i
R I e Ly
that satisfy the boundary condition

lim Z= & de.

[x| =00 X2 0

) = 1ay§, >~ Vy Is approximately the poloiaal tlow.
Z =iy, ~Vpi i ly th loidal fl

[ = ~v7a and Q.; = w«iTa are the normalized growth rate and ion
diamagnetic frequency.

o X2 = % is a modified ion sound gyroradius length scale

squared.
o \=— :Q (& + d2) is the effective resistive skin depth squared.
@ Ly is the inertial ideal MHD length scale.
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The eigenvalues of the inner layer equation are calculated numerically using

a shooting method.

@ The layer equation is solved by

L L Example Shooting Integration
treating it as an initial value : w : ‘ :

— Zleft

problem. o _ 1.0 —  dZ/dx left
@ The equation is integrated twice: —  Zright
dZ/dx right

o The first integration starts at
x = 0 and integrates outwards
towards an intermediate value of
X -
o The second integration starts at
Xxr > max (Ae, As) and integrates
inwards towards xpm.
To seed the integration we
initially guess the [ Zdx. ol

0.5t

Mode Amplitude

0.0f

@ We converge on ' by minimizing 0 1 2 3 4 5 6
the error in Z and Z’ at x,, and
the the guess of [ Zdx.
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Decoupling of the electrons and ions leads to faster growth rates at large ps.

Two Fluid Growth Rate (w, =0)

@ The linear growth rate is enhanced
when the ion sound length scale is
larger than the resistive skin depth al
(As > Ae).

o Here the two-fluid treatment is
accurate provided that the
ion-sound Larmor radius is larger
than the ion Larmor radius "
(ps > pi).

o The current sheet width is
characterized by the resistive 1t
skin depth Ae.

o The flow “sheet” is ‘ ‘ ‘ ‘
characterized by the ion sound 0 2 4 6 8 10
length scale As. As/Ae

3
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Diamagnetic drifts decrease the linear growth rate at fixed ps.

Two Fluid Growth Rate (ps < \.)

Two Fluid Growth Rate (ps > )
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@ In the collisional limit (Ae > ps) drifts that arise due to temperature
gradients have a similar impact of the growth rate as drifts that arise due
to density gradients.

@ In the semi-collisional limit (Ae < ps) drifts that arise due density gradients

have a larger impact of the growth rate than drifts due to temperature
gradients.
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A verification effort is underway as part of a larger effort to model the

nonlinear evolution of the giant sawtooth.

© Benchmarking MHD and two-fluid calculations

E. C. Howell, C. R. Sovinec Two-Fluid Benchmarking of the 1/1 Internal Kink



Linear calculations use the NIMROD code to evolve the primitive fields.

p(at\7+ \7~V\7) = JxB-VP-V.m
P;
ol
W=vV+vV —2/31v.V

dn+V - (nV) =V - (DVn— DyVV?n)
n(0T+ Ve VT) == (- DRV V= (y-1)V -4

= —prieW + [Bx W.(/+3BB)—(/+3BB>.WxB}

0B =—-V x [nf— Vx B+ % (Ix B — TeVn) + uodfatJi + ki V'V - B

@ Artificial particle diffusivity and magnetic divergence diffusions are used to
provide numerical stability.

@ Gyro-viscosity and two-fluid corrections to Ohm's law are included in
two-fluid calculations.
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Calculations are performed in a screw pinch that is n = 1 ideal kink

unstable.

1000 Equmbl:lum Pr?ssure gnd q Rroflles. .

3500 p r=rs K
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@ Equilibria are generated by specifying the pressure and safety factor.

@ Two equilibria are studied: one with a uniform pressure and the other with
a spatially varying pressure profile.

o This allows for the study of two fluid modifications to the kink with and
without diamagnetic drift stabilization.

@ A strongly sheared g profile is needed to produce thin layers.
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Resistive MHD calculations capture the transition from resistive to ideal

kink.

MHD growth rate for equilibrium with P’ =0 MHD growth rate for equilibrium with P' # 0
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@ The resistive interchange scaling y74 = S$71/3 is an excellent
approximation for the uniform pressure equilibrium with S < 10'°,
o Here the ideal drive is weak: Yjgeai7a = 4.2 X 1075
@ The pressure gradient is the dominant source of free energy for the
nonuniform pressure equilibrium.
o Ideal behavior is recovered for S > 10°.
o Here the ideal growth rate is 7iges7a = 1.6 x 1073,
@ The validity of the analytic theory breaks down due to a finite layer width
at small S.
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The radial velocity resembles the “top hot” trial function at large S.

Mode amplitude (a.u.)

Stager & 2.6 x 107

Shayer = 2.6 x 107
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Figures show the mode structure for the nonuniform pressure equilibrium
at $=2.6 x 10",

The radial flow is proportional to the displacement.

As predicted from MHD theory, the momentum and current layers have
the same width.

o Note that the horizontal axes use different scales in the two plots.
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NIMROD accurately calculates the growth rate in the transition from the

collisional to the semi-collisional regime in the absences of drifts.

Two Fluid Growth Rate

@ The linear growth rates agree with 30
theory to within 5% error for a
wide range or parameters. . 25}
e This agreement has been verified T

for ps/Ae <60 and S < 10°.

~

@ These calculations use the uniform 15

pressure equilibrium. Theory
; - ol | =0 i
@ The theoretical growth rate is 5% error

H e o S=1.6e+05
calculated assuming A, = 0. sl el

e o S=16e+07
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The separation of layer widths is observed at large d;.
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@ The width of the flow layer scales with ps.

The current layer width depends on both the resistive layer width and the
electron skin depth.

o In the collisionless limit the current layer width scales linearly with electron
skin depth.

o Figures show the mode structure for S = 2.6 x 10”.
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There is considerable disagreement in the calculated growth rate when

effects are included.

Two Fluid Growth Rate with n’ = 0 Two Fluid Growth Rate with 77 = 0
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@ Reasonable agreement is observed between NIMROD and the theory in the
uniform density calculation, where pressure gradients are due to
temperature gradients.

o Here the drifts have a small effect on the growth rate.
@ There is considerable disagreement in the uniform temperature calculation.

@ Increasing d; increases both ps and w, in these calculations.
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NIMROD reproduces the two-fluid linear kink behavior in several regimes.

o Resistive MHD calculations correctly calculate the linear growth rate in
both the inertial and resistive regimes.
o Agreement between theory and calculations is limited by the validity of
small layer approximation.
@ The two-fluid calculations agree with the theory of Zakharov and Rogers
to within 5% error in the absence of drifts.
o Agreement is obtained for a wide range of parameters ps and S.
@ The agreement breaks down when in calculations where the diamagnetic
drifts have a significant effect on the growth rate.
o Further work is needed to understand the source of the disagreement.
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Drifts reduce the linear growth rate at small d; for all cases with a finite

pressure gradient.

Growth Rate Mode Frequency
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@ The calculated growth rates are approximated by a simple model:
w = wei + i/ Yigup — wii/4.

@ Here the nonuniform pressure equilibrium is used.

@ The 1/1 kink in not the dominant mode at large d;.

o The new mode is characterized by a large v.
o This modes scales linearly with d; and is insensitive to S.
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Large oscillations in the mode structure are observed when the drifts have a

significant impact on the growth rate.
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@ These oscillations are characteristic of drift stabilization.
o Figures show the mode structure for S = 2.6 x 10°.
@ Here the growth rate is 25% smaller than the MHD growth rate.
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