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abstract 
We report on progress in using the M3D-C1 code to perform several resistive MHD 
code verification problems for comparison with analytic solutions and other 
codes.   The first set of problems was proposed by the ITPA group on control, 
MHD, and disruptions and is known as Joint Activity 2, or simply JA-2.   The intent 
is to study the interaction of several tearing modes in a torus.    As a prelude to 
that, we have performed linear and non-linear analysis of two low-beta 
configurations that are unstable to one or more tearing modes.     Configuration 
(1) has an analytic q-profile given (in cylindrical geometry) by:  q(r) = 1.15 x (1 + 
(r2/.6561)) and is unstable to only the (2,1) mode.   Configuration (2) has q-profile:  
q(r) = 1.33 x (1 + (r2/.354)4)1/4 (also in cylindrical geometry) and is unstable to both 
the (2,1) and (3,2) modes.  For each of these configurations, we have also defined 
axisymmetric toroidal equilibrium that have the same q() profiles (where  is the 
normalized poloidal flux) for comparison.   The second set of problems came from 
discussions over the last year at both the “Transients in Tokamak Plasmas” and 
“Integrated Simulations” workshops.   For these, besides the plasma region we 
include vacuum regions, resistive wall, and in some apply externally imposed 
“error fields” to study the evolution of tearing modes in the presence of more 
realistic and complex boundary conditions. 
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3. Nonlinear resistive MHD test problem with resistive 
wall and error fields 
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Progress on ITPA JA-2 benchmark with M3D-C1 

1.33327 <  q  <  3.69195 

Equilibrium parameters (SI units):   R=5,  a=0.5,   BT = 4.2,  n0 = 1020                                           
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We started with a cylindrical equilibrium with a given q(r) profile.  
This was then converted to a toroidal A=10 equilibrium with the 
same q().   This was unstable to both n=1 and n=2 modes. 



2.   Normal displacement and perturbed current eigenfunctions for n=1 mode 
 



3.   Normal displacement and perturbed current eigenfunctions for n=2 mode 
 



4.   Adapted mesh used for n=1 mode 
 

Mesh size varies from 0.002 to 0.03 



5.   Adapted mesh used for n=2 mode 
 

Mesh size varies from 0.002 to 0.03 



6. Convergence study for the S=106, =0,  A=10 equilibrium 

DT Xmin n=1tH n=2 tH  

  5 A 0.002 1.64 E-3 7.19 E-3 

  5 A 0.004 1.70 E-3 7.87 E-3 

10 A 0.002 1.65 E-3 7.29 E-3 
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7.  Dependence on geometry and beta 

geom  H 

A=10 0 1.64 E-3 

A=10  10-6 1.13 E-3 

Cyl 0 1.49 E-3 

Cyl 10-6 1.49 E-3 

geom  H 

A=10 0 7.19 E-3 

A=10  10-6 5.00 E-3 

Cyl 0 2.89 E-3 

Cyl 10-6 2.00E-3 

n=2 n=1 

• n=2 is always more unstable than n=1 
• Finite pressure is stabilizing in torus, not so much in cylinder 
• Toroidal geometry is more unstable than cylinder, especially for n=2 



8.  Test of growth rate with different numerical options: 
 
Cylindrical test case: 
p0 = 1.E-4,   dt = 2.0,    = 1.e-5,    =1.e-5  (S = 2.1 x 104),   uniform mesh x ~ 0.03 
 

isplitstep=1 isplitstep=0 

impmod=0 impmod=1 

16 32 linear 16 32 linear linear 

n=1 .0063 .0063 .0063 .0070 .0070 .0071 .0072 

n=2 .0048 .0048 .0048 .0064 .0064 .0064 .0066 

Conclusions: 
1. isplitstep=0 is most accurate, but only viable for linear runs 
2. impmod = 1  (Caramana advance) more accurate than impmod=0 
3. Good convergence in toroidal mode number for low-n modes (1 and 2) 

 
For explanation of impmod=0,1,  see:  Ferraro and Jardin, JCP 228 (2009) 7742-7770  
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Non-Linear Runs looked at Two Equilibria 

• Two-Mode Case (same as linear) 

• n=1 and n=2 unstable 

• Cylinder, A=3, A=10  torus 

• Linear and Nonlinear 
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• One-Mode Case  

• Only n=1 unstable 

• Cylinder, A=3, A=10 torus 

• Linear and Nonlinear 



Non-Linear Results 
1.   Two-Mode case:   Ran Nonlinear A=10 Torus numvar=3 

• S = 2 x 104     / = 1 

• Ran both 32 and 16 toroidal planes (with hermit cubic elements) 
 
In both cases, islands continue to grow and becomes totally stochastic by Time 
Slice 30.  (t=1500)   Very similar results for N=16 and N=32 plane cases.  Error  N4 

 
 
2. One-Mode Case:  Ran Cylindrical geometry case to saturation with reduced 

MHD 
• S = 105, / = .047 

 
Much slower island growth than above.  Island saturates at about W/a = .14 at 
t=50,000 

• Now running A=10 toroidal cases with full MHD 
 



Mode Growth vs time for Two-mode case 
Comparison of 16 planes (solid) and 32 planes (dashed) 



Comparison of surfaces at time t=1200 
for Two-Mode case with 16 and 32 Planes 

32 Planes   16 Planes 



Poincare plot at final time. Island width and magnetic 
energy in n=1 harmonic vs time. 
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SI Units:   R=5, a=0.5, BT = 4.2, n0 = 1020 

N=0 (axisymmetric) equilibrium not advanced in time. 
Low  < 10-7 

/tigress/sjardin/JA-2/One_Mode/Cylinder 

Single Unstable Mode Case in a cylinder 
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Plasma boundary  (r=a) 

Finite thickness wall 

Computational boundary 

P 

V 

V 

• Poloidal flux low order polynomial in r2 

• Current density vanishes at a 
• q0  <  q  <  qa  
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Model Cylindrical Equilibrium 
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Stationary State Equilibrium equations 



2D Nonlinear Run reaches stationary state 
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Linear Resistive Stability of Model Cylindrical Equilibrium 
with no wall (free boundary) 

Examine this 
case with a 
nearby wall 



Wall at r/a = 0.64: unstable 
(4/1)   mode dominates 

Wall at r/a = 0.62:   stable! 
(3/1)  mode dominates 



Growth rate of mode depends on wall resistivity 



Next Steps 
• Add sheared toroidal velocity with torque input (also to equilibrium 

equation) 
 

• Add error field 
 

• Study interaction of island with resistive wall and error field, and compare 
with theoretical results for mode locking 
 

• Extend to Torus 
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