

Effect of scrape-off layer currents on reconstructed tokamak equilibrium

CEMM meeting April 3rd 2016

J. R. King

With contributions from

R. Groebner (General Atomics); J. Hanson and J. Hebert (Auburn);

S. Kruger (Tech-X); Carl Sovinec (UW-Madison)

Work supported by the US Department of Energy, Fusion Energy Sciences Computational support from NERSC

- Edge modeling with experimental reconstructions can be corrupted by edge current discontinuity
- This discontinuity can be eliminated by self-consistently resolving the Grad-Shafranov (GS) equation with scrapeoff layer (SOL) n/T profile gradients
- How does including these gradients affect the underlying equilibrium?

On NIMROD's GS solver see [Howell and Sovinec, CPC 2014]

Reconstructions typically contain discontinuous current profiles across the separatrix

- The pressure is assumed to be constant outside the separatrix
- Current discontinuity is problematic for GS re-solves and nonlinear edge studies

Can include SOL region with currents

 The experimental reconstruction doesn't set the gradient of thermodynamic quantities to zero on the LCFS because <u>they</u> <u>aren't measured to be zero</u>

- EFIT profiles only extend to LCFS
 - How do we extrapolate while minimizing free parameters?
 - Result should be as close to possible to known measurements

We study two reconstruction: high and low current in SOL.

- Helps isolate effects of SOL current from GS re-solve
- Small current: 160414 @ 3025 ms
 - Inter-ELM reconstruction from H-mode shot with ELM pellet pacing.
 - Time selected is last 20% of pellet-trigger inter-ELM period
- Large current: 145098 @ 1800ms
 - QH-mode shot with large edge current
 - Near peeling boundary
 - Reversed-current discharge (flips sign of J_T and Ψ)

Low-current case – use measured SOL profiles except for T

High-current case – use measured SOL profiles except for T

Compare each equilibria with four different cases

Compare 4 different scenarios:

- Mapped
- GS re-solve, no SOL
- GS re-solve with SOL
- GS re-solve with SOL and PF

SOL cases maintain fixed current during re-solve \rightarrow minor effect on result

 \rightarrow 8 total cases

For the low edge-current case, inclusion of SOL produces similar current

For high edge-current case, inclusion of SOL moves LCFS by ~2cm

Currents (and flows) extend into the divertor.

Comparison of measurements to NIMROD fields investigates reliability of final state

For the low edge-current case, fit to data improves modestly

Crosses: Thomson n ; Diamonds: MSE; Squares: Coil B

For the high edge-current case, the benefits on including the SOL are mixed

Crosses: Thomson n ; Diamonds: MSE; Squares: Coil B

Table summaries of modifications

	Low current, 160414				High current, 145098				
χ^2/N	mapped	GS	GS+SOL	GS+SOLpf	χ^2/N	mapped	GS	GS+SOL	GS+SOLpf
Thom. T_e	22.3	23.4	4.80	4.15	Thom. T_e	60.9	61.7	7.77	6.99
Thom. n_e	19.4	20.5	4.07	3.33	Thom. n_e	2.87	5.22	11.4	9.93
CER T_i	6.98	6.96	6.74	6.84	CER T_i	10.2	10.3	19.7	19.6
MSE	1.49	1.49	1.46	1.47	MSE	1.14	1.13	1.13	1.13
Mag. Coils	0.61	0.63	0.82	0.70	Mag. Coils	1.65	1.60	4.57	3.27
Δs	mapped	GS	GS+SOL	GS+SOLpf	Δs	mapped	GS	GS+SOL	GS+SOLpf
$\Delta I/I_0$	6.95×10^{-5}	7.97×10^{-4}	3.22×10^{-7}	3.22×10^{-7}	$\Delta I/I_0$	9.86×10^{-5}	5.46×10^{-1}	3 -3.57×10 ⁻⁷	-3.57×10^{-7}
$\Delta \mathbf{r}_{xpt}$ (cm)	N/A	ref.	0.72	1.07	$\Delta \mathbf{r}_{xpt}$ (cm)	N/A	ref.	0.86	0.55
$\Delta \mathbf{r}_{zmax}$ (cm)	N/A	ref.	0.35	0.19	$\Delta \mathbf{r}_{zmax}$ (cm)	N/A	ref.	2.82	2.12

- Low-current case: better match to experiment
- High-current case: LCFS motion and BC affect Thomson n_e + CER T_i and coil comparisons, respectively.
- How do modifications to equilibrium state affect the mode dynamics in the high-current case?

The linear growth rates are largely unaffected by the inclusion of the SOL current in the high-current case

No flow

Inclusion of SOL currents improves rate of convergence

- Mode localized inside the LCFS
- Convergence effects likely more dramatic for nonlinear evolution of perturbations over the LCFS, but effect is difficult to quantify

Fixed boundary condition likely affects re-solved values at coils

- Currently we perform a fixed-boundary GS solve with the mapped ψ as the BC
- The boundary ψ is the superposition of the values resulting from the plasma current and external coils: $\psi = \psi_{\text{plasma}} + \psi_{\text{coils}}$
- A better solution may be possible with a free-boundary computation where ψ_{plasma} is allowed to change
- Free boundary solves have been implemented by C Sovinec

Nonlinear iteration: Converting to approximate-Newton starts with reorganization.

The fixed-point iteration for nonlinear *F*(Λ) and *P*(Λ) had been organized for the linear Δ* operator.

For fixed-boundary computations, find $\Lambda_h^{k+1} \in L_{hp}$ such that $\int_D R^2 \nabla \Omega \cdot \nabla \left(\Lambda_h^{k+1} + \Lambda_0 \right) dVol = \int_D \Omega \left(FF' + \mu_0 R^2 P' \right)^k dVol$

for all $\Omega \in L_{hp}$ with the superscript *k* being the iterate label.

• Note that
$$F' = \frac{d}{d\Psi}F(\Psi) = \frac{1}{R^2}\frac{d}{d\Lambda}F(\Lambda)$$
, for example.

• Equivalently, one may form a residual vector,

$$H_{\Lambda_{i}}^{k} = \int_{D} \left[R^{2} \nabla \alpha_{i} \cdot \nabla \left(\Lambda_{h}^{k} + \Lambda_{0} \right) - \alpha_{i} \left(FF' + \mu_{0} R^{2} P' \right)^{k} \right] dVol$$

for all α_i and update with $\delta \underline{\Lambda} = -\underline{\underline{M}}^{-1}\underline{\underline{H}}^k_{\Lambda}$, $M_{ij} = \int_D R^2 \nabla \alpha_i \cdot \nabla \alpha_j$.

With the residual-based formulation, full and approximate Newton result with different matrices.

• Formally, Newton's method uses the complete Jacobian matrix, and it changes with the iteration.

 $\underline{\underline{M}} \longrightarrow \underline{\underline{M}}^k = \nabla_{\Lambda_h} \underline{\underline{H}}^k_{\Lambda}$

- With NIMEQ, as with other solvers, it is easier to use approximate Newton iteration.
 - Partial derivatives of the nonlinear terms are found via numerical difference approximation. For example,

$$\frac{\partial}{\partial \Lambda} P' \cong \frac{\delta}{\delta \Lambda} P' \equiv \frac{P'(\Lambda + \delta \Lambda) - P'(\Lambda - \delta \Lambda)}{2\delta \Lambda}$$

computed at nodes of the expansion and interpolated for the element computations. The *FF*' is treated similarly.

• Also, the approximate differencing considers the separatrix shape to be held constant.

Initial results are encouraging in that approximate-Newton substantially reduces iteration.

• Approximate Newton reduces the iteration count in these fixed-boundary tests with or without **B**-tracing for distinguishing open and closed flux.

Summary

- Modeling with SOL profiles eliminates edge-current (and flow) discontinuity
- Re-solved solution is consistent with GS equation
- Inclusion of SOL current impacts comparisons to experimental measurements:
 - Improves comparison with low SOL current
 - Mixed effect on comparison with higher SOL current
- Linear rate of convergence on edge modes are improved with SOL current
 - Effect likely more important for nonlinear evolution of perturbations through the LCFS
- Newly developed (C Sovinec) free-boundary and approximate Newton methods can impact experimental comparisons and performance through convergence rates