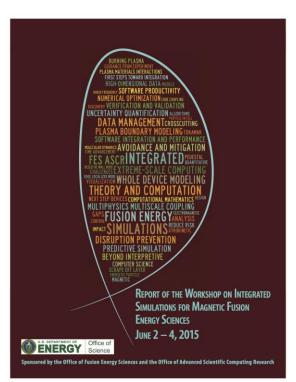
Planning for Disruption Modeling

led by Carl Sovinec and Steve Jardin

CEMM Meeting, April 3, 2016

The Workshop for Integrated Simulations for Magnetic Fusion Energy Sciences, June 2-4, 2015 provides a basis.

• The report is available at


http://science.energy.gov/~/media/fes/pdf/worksh op-reports/2016/ISFusionWorkshopReport 11-12-2015.pdf

- CEMM contributed to the discussions leading up to the workshop, the workshop, and the
 - report.

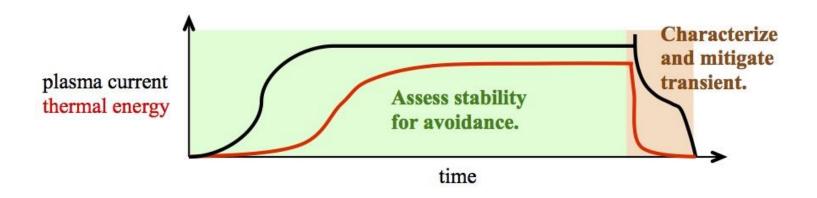
• Disruption Physics

- Panel Chair: Carl Sovinec (University of Wisconsin-Madison)
- Panel Co-Chair: Dylan Brennan (Princeton University)
- Panel Members:

Boris Breizman (University of Texas - Austin) Luis Chacón¹ (Los Alamos National Laboratory) Nathaniel Ferarro (General Atomics) Richard Fitzpatrick (University of Texas - Austin) Guo-Yong Fu (Princeton Plasma Physics Laboratory) Stefan Gerhardt (Princeton Plasma Physics Laboratory) Eric Hollman (University of California - San Diego) Valerie Izzo (University of California - San Diego) Steve Jardin (Princeton Plasma Physics Laboratory) Scott Kruger (Tech-X Corporation) Ravi Samtaney¹ (King Abdullah University of Science and Technology) Hank Strauss (HRS Fusion) Alan Turnbull (General Atomics)

We expanded the scope slightly.

- Panel was charged with disruption "prevention, avoidance, and mitigation."
- We added characterization as an essential physics task for accomplishing PAM.
- Recommendations are captured in 3 "priority research directions."

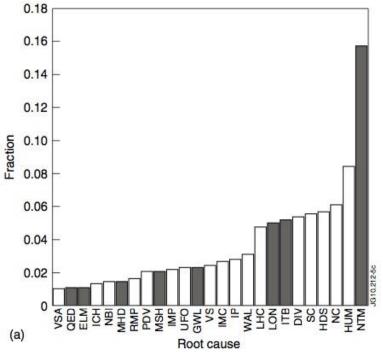

PRD 1: Integrated simulation capability for all stages/forms of tokamak disruption.

instability -> thermal quench, current quench -> final energy deposition

- Primary goals are characterizing nonlinear evolution and engineering mitigation systems.
- This requires:
 - Macroscopic dynamics
 - Runaway-electron and majority species kinetics
 - Neutral and impurity transport
 - Radiation
 - External electromagnetics (or magnetostatics)
 - Plasma-surface interaction

PRD 2: Develop automated plasma state reconstruction and stability assessment system.

- This PRD primarily contributes to avoidance and plasma control.
- Development of such a system would be useful for all macroscopic modeling efforts.


PRD 3: Verification and Validation

- The proposed initiative includes the nonlinear modeling (as would be expected).
- VV methodology is also expected to weigh-in on whether linear MHD stability is relevant for prediction or forecasting.
 - This connection is rather generally assumed but has not been proven.

Background Information

- There are many causes for disruptions.
- The transients panel outlined different disruption sequences.

 Note that NTM (meaning locking) is the most frequent root cause.

Root causes of JET disruptions from DeVries, et al., NF 51, 053018.

Challenges and Opportunities Section

- Avoidance and onset prediction
 - Sensitivity to profiles is also an important consideration for nonlinear modeling.
- Magnetic islands, rotation, and locking
 - Bifurcation, rotation physics, NTV, turbulence-induced viscosity
 - Timescale challenges
- Thermal quench
 - Loss of confinement not well understood
 - Parallel kinetics, impurity influx, and radiation all contribute
- Current quench
 - TQ changes resitivity, its profile, and affects position control to start CQ
 - Coupling to external EM is needed
- Runaway electrons
 - Large E from TQ
 - Generation mechanisms remain topics of analytic study
 - Loss mechanism involves coupling with macroscopic dynamics
- Disruption mitigation
 - Requires radiation, ionization/recombination, neutral transport
 - Shattered pellet injection is relatively unexplored computationally

Crosscutting with Applied Math/CS

- Implicit methods for multi-physics, multi-scale simulation
- Scalable solvers
- Physics integration & moving beyond interpretive simulation
- Emerging computer architectures
- Large data sets, especially from scans of profiles for stability mapping (also UQ)

Planning - physics

- 1. Runaway electrons
 - Basic idea: Extend NIMROD's continuum kinetic formulation to model RE population
 - Start with axisymmetric plasmas
 - Can we model the formation of runaways during the thermal quench?
 - Relative merits of PIC vs continuum models
- 2. Long time scale disruptions

Basic idea: Most disruptions are caused by NTMs/RWM, so we need to study feedback stabilization of NTMs

- 3. Neutral Dynamics
- 4. Model for shattered pellets

Planning – AM/CS

- CS issues: 5D scaling and optimization
- CS issues: 5D scaling and optimization
- AM issues: CFL condition and implicit methods for energetic particle population
- AM issues: (Perhaps not useful for a good pitch): Creating good equilibrium (correct delta-prime stability: zero plus or minus epsilon) requires understanding the linear stability properties and being able to build a linear code out of the extended MHD codes would be useful, but MHD operator is hard