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Coupling Particles to FE fields

e assume that the density of hot particles is negligible compared
to the bulk MHD density

e but allow 81, ~ Bpyuik-
e particles coupled to the fields through Iy,
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e also can couple through J



Define shape functions in logical space (p, q) !

Ni(p,q) = Mﬁ —p)(1—q) No(p,q) = Mﬁ +p)(1—q)
N3(p,q) = Mﬁ +p)(1+q) Nalp,q) = Mﬁ —p)(1+4q)
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! Alejandro Allievi and Rodolfo Bermejo, JCP, 132, (1997)




where —1 < p,q <1

Use Newton method to solve for (p, q) given (R, Z)
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AF = (a1by — agby) + (a1bs — asgby)p* + (agby — asbz)q”



e matrix on rhs is inverse of the Jacobian relating the logical
coordinates to the real coordinates
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e this is used in computation of derivatives on the finite elements.
e iterate until Lﬁw@ — m\mvw + (Zp — N%vw < €

oif —1 < p,q < 1 is not true, then the particle is not in this
element, and another element needs to be searched

e new element to be searched is determined by the value of (p, q),
left it p < —1, right if p > 1, down it g < —1, upif ¢ > 1, and
combinations thereof.



Equations of motion
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e need gradient quantities

e take the derivative of the shape functions
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e similarly for Z.




e from the inverse function theorem
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e richt hand matrix is easy to compute if one recalls that
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e already computed for Newton Method




Test Case

Particles trace field lines and execute bounce motion for the sim-
plified test case.
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To test the method, a reduced equation of motion is used,
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where v = % ?w + @W assume axisymmetry, cylindrical ge-

)

ometry, and no E-field.



For the simple test case, energy conservation is excellent, to a few
parts in 10% or better depending on e, the stopping criterion. The
performance is 10’s of us per particle, per timestep. This also
varies with e.
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Parallelization

e two levels of parallelization - fourier layers and rblocks
e for fourier layer, use domain cloning

- divide particles evenly among fourier layers
- each layer evolves own set of particles
- global sum required to gather particle information

- particles are never passed between layers
e rblocks 1s domain decomposition

- generate map from global grid to rblock-decomposed grid
- sort particles on global grid
- use map to pass particles to appropriate rblock

- sorting allows optimization by reducing field evalution



Sorted PIC

e sort particles into respective cell
e gather/scatter done cell by cell instead of particle by particle

e reduce field evaluation to once per cell instead of once per par-
ticle

e allows for alternative particle deposition



Minimal Implementation

e assume some k profile

e for a single linear mode use energy conservation to observe ef-
fects of kinetic particles

(Wifp — OWirap) + OWEE — WEE) =0
e scale amplitude of 0W sy p to maintain energy conservation
Wit = adWirnp
e solve for a
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