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Report on completion of third quarter elm simulation milestone 
3nrd Q (end of June 05) 
Further extend the studies to include variation of the electron pressure along field line, 
and look for appropriate equilibrium for test cases. 
 
 
During the previous (second) quarter we reported the development of a “realistic” 
equilibrium to be used in further ELM studies.  This equilibrium had an internal q-profile 
and shape resembling common DIII-D discharges that exhibit ELMing behavior, and had 
an edge pedestal temperature of 600 eV.  This equilibrium was confirmed to be unstable 
to ELMs with the ideal MHD code ELITE.  It was then studied for linear stability using 
the resistive MHD model in the NIMROD code.  The NIMROD code did not find any 
ELMs.  Instead, an internal mode was found that resembled a resistive ballooning mode.  
The internal instability, and the ELM stability, were not understood. 
 
 
Here we report the successful completion of the third quarter milestone, namely, Further 
extend the studies to include variation of the electron pressure along field line, and look 
for appropriate equilibrium for test cases. 
 
We found that, within the resistive-viscous MHD model, the stability of the equilibrium 
studied during the second quarter (

    

! 

Tped = 600 eV) is strongly influenced by isotropic 
viscosity.  The unstable mode appears to have two components, one related to an internal 
ballooning-like structure, and another concentrated at the edge of the discharge.  (These 
are not different modes, but merely characteristics of the eigenfunction for a given set of 
parameters.)  For relatively large viscosity, the internal ballooning structure is dominant.  
The edge localized (ELM-like) component emerges as the viscosity is lowered, becoming 
dominant in the limit of vanishing viscosity.  Intermediate values of the viscosity show a 
mixture of the ballooning and ELM-like structures.   
 
The influence of the isotropic viscosity is measured by the magnetic Prandtl number.  
This is the ratio of the viscous and resistive diffusivities.  Large Prandtl number indicates 
large viscosity relative to resistivity. small Prandtl number the opposite.  In Figure 1 we 
plot the linear growth rate of the n = 10 mode for the case with 

    

! 

Tped = 600 eV, as a 
function of the magnetic Prandtl number, Pr, for several values of the Lundquist number, 
S.  (All cases were run with a small isotropic thermal diffusivity of   

! 

" =1 m
2

/ sec.)  In all 
cases, there is a clear change in the growth rate around Pr ~O(1).  This indicates the 
transition from the internal mode at large Pr to the edge localized mode at small Pr.  (The 
results report during the second quarter had Pr = 103.  Clearly, the large viscosity was the 



reason that the edge localized mode was not seen.)  The lateral shift in the curves shown 
in Figure 1 suggests that the mode may be influenced by the magnitude of the viscous 
diffusivity alone, rather than by Pr itself.  The isolated points at Pr = 10-3 for the two 
largest values of S indicate that the growth rate of the edge localized mode is independent 
of the resistivity, in the limit of large resistivity.  This suggests that the mode has ideal 
MHD origins, in agreement with the results of ELITE.  The growth rates obtained by 
ELITE and NIMROD for this mode are in good agreement.  We have not yet studied the 
scaling of the growth rate of the internal mode (at large Pr) with S.  This study is being 
performed, and will be reported in the fourth quarter. 
 
 

 
 

Figure 1.  Growth rate (sec-1) of the n = 10 mode vs. Prandtl number, for different values of the 
Lundquist number, for the equilibrium with 

    

! 

Tped = 600 eV.  For small Prandtl number (small 
viscosity) the modes show an edge localized (ELM) structure.  The resistive ballooning structure 
emerges at large Prandtl number.  The region near Pr = 1 shows a mixed structure.  All calculations 

were performed with isotropic thermal diffusivity of   

! 

" = 1 m
2

/ sec . 
 
The large linear growth rate of the edge localized mode for the case of 

    

! 

Tped = 600 eV 
and low Pr (    

! 

"# A = 0.36) indicates that this equilibrium may be well be well beyond the 
ideal linear stability boundary, and is therefore unlikely to exist under experimental 
conditions.  We were thus motivated to construct a sequence of equilibria with 
successively decreasing pedestal temperature between 700 eV and 100 eV.  These 
equilibria are shown in Figure 2.  Note that the case with 

    

! 

Tped =100 eV has essential no 
edge pedestal 
 
 



 
 

Figure 2.  Sequence of DIII-D-like equilibria with successively decreasing pedestal temperature, but 
similar cross sectional shape.  The top figure shows the parallel current profiles, the middle figure 
shows the q-profiles, and the bottom figure shows the temperature profiles.  All profiles are functions 
of the equilibrium flux. 

 
We have studied the linear stability of this family of equilibria with Pr = 10-3, well below 
the transition indicated in Figure 1.  The results are shown in Figure 3, where we plot the 
growth rate for modes with n = 1, 10, 20, and 30 versus 

  

! 

Tped  for     

! 

S = 3.7 "10
8  (again 

with isotropic thermal diffusivity of 1 m2/sec).  We note a transition between the ELM 
and the internal mode (IM), similar to that observed as a function of the Prandtl number, 
as the pedestal temperature is lowered.  The n = 1 mode is stable for the lowest pedestal 
temperature. 



 
 

 
 

Figure 3.  Linear growth rate for the n = 1, 10, 20, and 30 modes for the sequence of equilibria shown in 
Figure 2.  For large pedestal temperatures, the mode is localized at the edge.  This ELM-like 
component disappears as the pedestal is reduced, and the unstable mode becomes the internal mode 
(IM) reported in the second quarter.  This transition is similar to the transition that occurs as a 
function of Pr (see Figure 1). 

 
The transition of mode structure between the IM and the ELM is shown Figure 4, where 
we plot the eigenfunction for the electron temperature for the cases with pedestal 
temperatures of 100 eV, 200 eV, and 400 eV.  The mode for the 100 eV has a dominant 
component that is resonant inside the separatrix, typical of the IM.  The mode for the 400 
eV case is clearly localized at the edge.  At 200 eV, the mode shows an admixture of both 
structures.  A similar transition in structure occurs at Pr ~ O(1), as seen in Figure 1. 
 
 



 
 

Figure 4.  From left to right, linear eigenfunctions of the electron temperature for the n = 10 mode, for 
equilibria with pedestal temperatures of 100 eV, 200 eV, and 400 eV, respectively.  The figure on the 
left (100 eV) is typical of the IM (internal mode), while the structure on the right (400 eV) is typical 
of the ELM.  The central figure (200 eV) is an admixture of both types.  A similar transition occurs as 
a function of Pr (see Figure 1). 

 
The growth rates of the unstable modes found with NIMROD (with visco-resistive MHD 
and isotropic thermal diffusivity) in these equilibria increase monotonically with n, 
through n = 40.  Ideal MHD calculations with ELITE show a fall-off at high-n.  We do 
not yet understand this qualitative difference between NIMROD and ELITE. 
 
There are theoretical indications using extended MHD that stabilization should occur at 
some moderate value of n.  We have investigated three possible extensions to the 
NIMROD MHD model: anisotropic thermal diffusivity, parallel (as opposed to isotropic) 
viscosity, and two-fluid and finite-Larmor radius (FLR) effects.  Preliminary results of 
these studies are reported below. 
 
The effect of anisotropic thermal diffusivity (

  

! 

"|| /"# >>1) is to flatten the temperature in 
the direction parallel to the magnetic field lines much faster than across them.  Physically, 
this may be the result of collisions, free streaming by electrons, or parallel sound waves.  
In NIMROD this is modeled as an anisotropic (Braginskii) diffusion operator.  In any 
case, it accounts for some effects of pressure variations along the field lines, and 
therefore meets the criteria for the third quarter milestone. 
 
The growth rate is found to decrease with increasing anisotropy, with complete 
stabilization at 

  

! 

"|| /"# =108.  The effect of anisotropic thermal diffusivity on linear 
stability is illustrated in Figure 5, where we plot the linear growth rate as a function of n 
for the case of 

    

! 

Tped = 400  eV,     

! 

S = 3.7 "10
8 ,   

! 

Pr =10
"3, and 

  

! 

"|| /"# =107 .  (For 

comparison with the results reported above, all cases were run with     

! 

"# =1 m
2
/sec .)  The 



growth rate now peaks at about n = 20, and continues decreasing to n = 40.  (Higher 
toroidal mode numbers have not been studied.)  The shorter wavelengths are more 
strongly affected by the parallel diffusivity, as is to be expected. 
 
 

 
 

Figure 5.  Linear growth rate as a function of toroidal mode number n, for the case with 
    

! 

Tped = 400  eV, 
    

! 

S = 3.7 "10
8,   

! 

Pr = 10
"3 , and 

  

! 

" || /"# = 107 .  The growth rate peaks near n = 20, and then decreases 

monotonically.  (Complete stabilization is found for 
  

! 

" || /"# = 108 .)  The solid green curve was 
obtained with spatial resolution of 40 (radial) X 120 (poloidal) nodes.  (For comparison, the solid blue 
curve was obtained with isotropic thermal diffusivity.)  The dotted red curve was obtained 40 X 80 
resolution, indicating the importance of spatially resolving modes with high-n.  We emphasize that 
the points near n = 40 on the green curve are likely not spatially converged, and should be viewed 
with the appropriate skepticism. 

 
In Figure5, the solid (green) curve was obtained with spatial resolution of 40 (radial) by 
120 (poloidal) nodes, and bi-quartic finite elements.  The dotted (red) curve was obtained 
with a mesh of 40 by 80 nodes.  The deviation of these results at increasing n indicates 
the importance of adequate spatial resolution for high-n modes.  It is therefore likely that 
the green curve is inaccurate at the highest n, and fully converged results my not even 
indicate a maximum in the growth rate.  These important studies are underway.  This has 



implications for the non-linear computations required for the fourth quarter, and will be 
discussed later in this report.   
 
Parallel transport appears to have a significant effect on the linear stability of edge 
localized modes in this family of equilibria.  Obtaining physically realistic values of the 
parallel transport coefficients (parallel thermal diffusivity and viscosity), even in the edge 
of modern tokamaks, requires solution of the kinetic equation parallel to the magnetic 
field.  This calculation of non-local parallel closures has been carried out for one of the 
equilibria studied here. 
 
 

 
 

Figure 6.  Parallel heat flow resulting from the n = 10 mode obtained with a non-local, parallel kinetic 
closure calculation.  Note the concentration near the edge.  The result is consistent with the use of 

  

! 

" || /"# = 107$8  in the Braginskii closure used in the NIMROD calculations (see Figure 5).   

 
An important use of the quantitative, non-local parallel heat flow closure is to confirm 
that the ratio of κ||/κ⊥ used in the numerically efficient Braginksii closure, is physically 
relevent.  For these simulations, we calculated the resultant non-local, parallel heat flows 



for the toroidal eigenmodes, n = 5, 10 and 20.  A contour plot of the parallel heat flow 
response for the n=10 eigenmode is shown in Figure 6.  Note that the heat flow, like the 
eigenmodes, is localized radially in the pedestal edge region.  From this calculation, we 
inferred that at a value of κ||/κ⊥ between 107 and 108, the Braginskii closure predicts a heat 
flow response comparable to that of the non-local closure.  Hence, using anisotropic 
thermal conduction with κ||/κ⊥~ 107-8 to stabilize high toroidal mode numbers is 
physically relevant. 
 
Additionally, a linear version of the non-local parallel ion stress, π||, has been 
implemented in order to test the linear effect of parallel viscosity.  Using the same 
technique as above, we inferred a value for the parallel viscosity of approximately 104 

which is to be used in linear calculations using NIMROD's local, Braginskii form for π||.  
The results, which are not reported here, show that parallel viscosity has little effect on 
growth rates or eigenmodes. 
 
Linear two-fluid and FLR effects have been implemented into the NIMROD code, and 
studies of their effects on the linear stability of ELMs have begun.  Two-fluid effects are 
represented by additional (Hall and diamagnetic) terms in Ohm’s law, and FLR effects by 
the gyro-viscosity in the equation of motion.  Both sets of terms (sometimes lumped 
together as “plasma drift effects”) require special attention to the details of the algorithm 
to provide an efficient, stable method, and this effort is still underway.  A few details are 
given below. 
 
As their name implies, plasma drift effects induce propagation, and they alter the stability 
of MHD modes.  In addition, two-fluid models have important dispersive waves, where 
frequencies are related to the square of the wavenumber, ω ~ k2.  These properties change 
the mathematical character of the PDE system, and we have not found it practicable to 
retain only self-adjoint operators for large-Δt stabilization.  One possibility is to use a 
time-centered implicit method.  Another method that is being analysed and implemented 
retains the staggered differencing between V and other fields in the time domain and uses 
implicit operators at each step.  Terms associated with drift and dispersive waves are 
made numerically stable by non-self-adjoint differential operators, while the operator for 
MHD waves is unchanged.  Taking the limit of zero electron mass, the staggered time-
discrete form of the two-fluid model with drift effects is: 
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where superscripts show the time-level indices, and Δ indicates the change from a single 
step.  The charge current density is directly related to magnetic field, BJ !"=0µ , the 
number density is the same for the two species (α=i,e), and mi is the ion mass.  The ion 
flow velocity (Vi) is equivalent to the plasma flow velocity, while the electron flow 
velocity is neJVV !=

e
.  The pressure p (without subscript) is the sum of the electron 

and ion pressures, ( )
ie TTn + , and the differential operator L in (1) is the linear MHD force 

operator,  
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Heating in (3) for each species appears as the term Qα, and η is the electrical resistivity.  
The number density appearing in (3) and (4), may be averaged from the j+1/2 and j+3/2 
time-levels, since both values are available.  However, the j+1 level of electron flow in 
the electron temperature advance is not known until after the magnetic advance, so (3) 
may be solved first without the updated Ve to predict pe for (4), followed by a correction 
of electron temperature with the updated Ve. 
 
Important drift effects from finite-sized gyro-orbits appear in (1), (3), and (4).  In the flow 
velocity evolution (1), they result from the gyroviscous part of the traceless stress tensor, 
Πi, and for the Braginskii model, the gyroviscous stress is 
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where .ˆ BBb !   The heat flux vectors qα for separate species temperatures contain a term 
that directs heat perpendicular to both the magnetic field and the temperature gradient, 

( )
i

1

i
ˆ5.2 TeBp !"+

#
b  for ions and ( )

e

1

e
ˆ5.2 TeBp !"#

#
b  for electrons.  In (4), the terms 

associated with drifts appear explicitly.  Finite ion pressure leads to an imbalance 
between the Lorentz force and the electron pressure gradient, which causes magnetic 
perturbations to drift. 
 
To ensure that the algorithm is numerically stable, the drift terms are being implemented 
implicitly, as indicated in (1)-(4).  At present, NIMROD’s linear drift effects include the 
Hall and diamagnetic effects in the magnetic advance, gyro-viscosity (except for 
contributions from equilibrium flow) in the velocity advance, and the cross-heat flux 
terms in separate electron and ion temperature advances.  After completing drift effects 



associated with equilibrium flow, we will also need to implement matrix-free dot-product 
routines for nonlinear 3D computations. 
 
We have begun preliminary applications of extended MHD model described in the 
preceding paragraphs to the equilibria shown in Figure 2.  The first application was to the 

    

! 

Tped = 600 eV equilibrium.  Conventional wisdom holds that these effects are stabilizing 
at high-n, and are often cited as the reason that high-n modes are not observed in 
experiments.  However, we have found that drift effects have little consequence for the 
linear growth rate for this case, even up to n = 40.  The MHD growth rate is 

  

! 

" = 7.6 #10
5

 sec
-1.  With two-fluid and FLR effects, this is slightly reduced to 

  

! 

" = 6.5#10
5

 sec
-1, with a real frequency of   

! 

" = 5.4 #10
5

 sec
-1.  The eigenfunction for 

the two case is illustrated in Figure 7. 
 
 

  
Figure 7.  Edge localized eigenmode for n = 40.  The inside of the discharge has been removed to reveal 

the edge structure.  The figure on the left is with the resistive MHD model.  The figure on the right is 
with the extended MHD model including Hall, diamagnetic, and gyro-viscous (FLR) terms.  While 
there is a small but quantitative difference in the growth rate, the only significant difference in the 
structure is a slight downward shift in the figure on the right due to rotation. 

 
One possibility for the difference between theoretical expectations and computational 
results in this case is the large growth rate of the MHD mode.  Recall that     

! 

"# A = 0.36, 
which is exceedingly fast.  In contrast, the theoretical models usually assume that 
dynamical frequencies are slow compared to other characteristic frequencies, and this 
assumption may be violated in the present case.  We are thus motivated to investigate the 
effect of the two-fluid and FLR effects on the growth rate for cases with lower pedestal 
temperature.  Preliminary results of such a study are summarized in Figure 8.  Here we 
plot the linear growth rate as a function of the toroidal mode number for the case with 
400 eV pedestal temperature, for six different models: MHD, 2-fluid (Hall), and 2-



fluid/FLR (GV), for both isotropic and anisotropic (
  

! 

"|| /"# =107 ) thermal diffusivity.  
Other parameters are the same as in Figure 5.  By far the strongest stabilizing effect is 
provided by anisotropic thermal diffusivity. 
 
We remark that a single, preliminary calculation for n = 30 with anistropic thermal 
diffusivity showed complete stability when the coefficient of gyro-viscosity was 
increased by a factor of 10.  This requires further study. 
 
 

 
 

Figure 8.   Linear growth rate as a function of toroidal mode number for the case of 400 eV pedestal 
temperature, S = 3.7 X 107, Pr = 10-3.  Two fluid and FLR stabilization are very weak. 

 
Some important points have been raised in these studies, as well as certain caveats.  
There are given below. 
 
1. All of the linear MHD results reported here had an isotropic thermal diffusivity of 

    

! 

" =1 m
2
/sec .  No true ideal MHD results have been obtained.  While we do not expect 

this effect to be qualitatively important, we have not done the calculations, and this is 
therefore only speculation.  These calculations are underway. 

 



2. We do not understand the nature of the internal ballooning-like mode (IM) that occurs 
at both high Prandtl number and low pedestal temperature.  The growth rate as a 
function of S needs to be determined.  These studies are underway. 

 
3. For similar equilibria, the ideal MHD code ELITE generally shows a peak in the 

growth rate as a function of n, with the growth rate falling as n increases.  In some 
cases there is complete stabilization at high-n.  With NIMROD this behavior has only 
been seen with anisotropic thermal diffusivity; it has never been seen with ideal MHD, 
or even with isotropic thermal diffusivity.  The reason for this discrepancy is 
unknown, but the results reported here should be viewed in this context. 

 
4. The NIMROD results reported for high-n (up to n = 40) should not be considered as 

spatially converged.  In fact, there is a reasonable expectation that they are not, and 
that the converged results could differ significantly (even qualitatively) from those 
presented here.  In particular, it is possible that, for highly anisotropic thermal 
diffusivity, spatial discretization errors could bleed a small amount of parallel 
transport into perpendicular transport, thus providing a stabilizing effect that could 
account for the behavior shown in Figure 5.  These convergence studies are underway. 

 
5. High-n modes require significantly more poloidal spatial resolution that low-n modes.  

Thus, non-linear calculations with 20 to 40 toroidal modes may require significantly 
more spatial resolution than was previously assumed.  It all depends the importance of 
the high-n modes (see #6, below). 

 
6. Meaningful non-linear calculations cannot be performed if there is no stabilization of 

the high-n modes.  This is because the energy spectrum will become flat and the 
calculation will lose toroidal resolution.  So far, we have not found any reliable 
stabilization mechanism.  It is hoped that a two-fluid Ohm’s law, FLR effects (gyro-
viscosity), and anisotropic thermal diffusivity will become more effective stabilization 
mechanisms at lower pedestal temperature, where the linear MHD growth rate is 
lower, but this remains to be seen.  If physical high-n stabilization is not found, it is 
unlikely that we will be able to meet the non-linear calculation requirements of the 
fourth quarter milestone without compromising scientific integrity.   

 
 
 
 
 
 
 
 


