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Thesis

e Neoclassical viscous stress-tensor closures are presented which produce poloidal
ion flow damping and a nonlinear threshold for the neoclassical tearing mode
consistent with theoretical predictions.

Outline
e MHD equations.
e Neoclassical viscous stress-tensor forms: CGL and poloidal flow damping.
e Ion stress-tensor results.
e Nonlinear island evolution equation.
e Nonlinear threshold for neoclassical tearing modes.

e Future Work.
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The magneto-hydrodynamic form of the two-fluid
equations are:

e The momentum equation
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e The total pressure equation
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e The generalized Ohm’s Law,
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e The pre-Maxwell equations

—
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The heat flux closure is critical to the simulation of
neoclassical tearing modes

e A simple Braginskii form is used to provide the necessary pressure equilibration
along perturbed field lines:

qg= |x__mw. Vp — (x1 — x|) VP,

—

where b denotes a unit vector in the direction of the total magnetic field.
e Finite parallel and perpendicular diffusion effects introduces a nonlinear thresh-
old for destabilization of the neoclassical tearing modes.

Cross field diffusion transit timer; = (Wy/2)?/x.
Parallel-diffusion transit time 7)) = 1/k}x

The parallel wave number in the large-aspect ratio limit is given by k)| ~ 0.5mW,/q?(dgq/dr).

e A balance of the two transit times yields
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The Chew-Goldberger-Low (CGL) closure form
originates from Hux-averaged neoclassical theory.

e In all collisionality regimes, the dominant parallel viscous stress has a Chew-
Goldberger-Low (CGL) form that is expressed as
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p| is the parallel pressure.
p. is the perpendicular pressure.

The subscript alpha indicates electron’s or ions.

e The pressure anisotropy for this approximation is expressed as
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p is a poloidal flow damping frequency.

e The closure as implemented has been partially linearized.
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Poloidal Flow Damping Closure is approximate
Hux-averaged CGL.

—

e The suggested form for V . Il is
Vo 8o
——  z2€e>
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Ue 1s the viscous damping frequency for each species «,

¢ - Ily = palla A.mmv

Depends on the collisionality regime.
€o = QQA X Q% and ¢ is the axisymmetric toroidal angle,
1 is the poloidal flux,

J is the Jacobian of the coordinate system.
e The form can be shown to be dissipative.

e Linear layer analysis yields bootstrap current, low damping, and neoclassical
enhancement of the polarization current.

e Additional approximations can be made:

Diamagnetic approximation expresses electron flow as pressure gradient.

Hole approximation uses analytic pressure profile about island.
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Closures are tested for equilibrium poloidal How

damping.

e Impose a poloidal flow and verify that the poloidal energy is damped.
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CGL form generates toroidal flow.
The toroidal flow flux-averages to zero.
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The ion poloidal low damping stabilizes a regular
tearing mode via neoclassical enhancement of
polarization current.

e Equlibrium is the 2/1 tearing unstable M3D/NIMROD PSACI benchmark.

e Damping observed when growth rate on order of damping rate.
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Nonlinear Rutherford island evolution equation
predicts a stability boundary.

kodW w Dpg
S =At — [Dpe+ | + ..
n dt W2+ W3 o, — H
where W is the full-width of the island.
D,,. is the measure of neoclassical tearing mode stability.
Dr = E + F + H? is the resistive interchange parameter.
as and ag are the small and large Mercier index.

*

n* is the resistive diffusion coefficient in flux space.

A* = A'|W/2| 720 /—4D;.

e May be additional effects such as FLR, NEPC.
e A’ is typically stabilizing.

e D,  is typically destabilizing.

e Dp is typically stabilizing and the anisotropic thermal diffusion may take a

different form.
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Neoclassical Tearing Mode Stability Boundary agrees
with analytics.

e Here, p./v. parameterizes the bootstrap current, D, x pe/Ve/(1 4+ pe/Ve).
e Stability boundary requires inclusion of Dg.

e Discrepancy exists at samll p,/ve.
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Conclusions

e Two forms of the ion viscous-stress tensor term were presented that reproduce
poloidal ion low damping.

The CGL form tends to generate toroidal momentum, but preserves as a flux-surface average.
The poloidal low damping form is the preferred form.

The poloidal flow damping form also can slow down the linear growth of tearing instabilities.

® The electron stress-tensor approximations succesfully reproduce an NTM.

The closure reproduces the nonlinear analytic island evolution equation.

The diamagnetic approximation has the least restictive time-step.
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Future Work

e Two-fluid effects will introduce rotation.

e Flow modifications should lead to more effects from the neoclassical enhance-
ment of the polarization current.

e Unknown effects when pressure is separated into density and temparture.
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