Parameters and Profiles for the zero-hot-particle-beta Case

G. Y. Fu

(December 20, 2000)

geometry: circular tokamak with aspect ration R/a = 2.763. **density profile**: uniform and fixed in time.

pressure profile:

$$p = p_0 e^{-\bar{\Psi}/\Psi_0} \tag{1}$$

with $\Psi_0 = 0.249$. $\overline{\Psi}$ is the poloidal flux normalized to zero at magnetic axis and unity at the plasma edge. The peak plasma beta is 8% where the beta is defined with the vacuum magnetic field at the geometric center.

q **profile**:

$$q = q_0 + \bar{\Psi} \left[q_1 - q_0 + (q_1' - q_1 + q_0) \frac{(1 - \Psi_s)(\bar{\Psi} - 1)}{\bar{\Psi} - \Psi_s} \right]$$
(2)

where $\Psi_s = (q'_1 - q_1 + q_0)/(q'_0 + q'_1 - 2q_1 + 2q_0)$, $q_0 = 0.6$, $q_1 = 2.5$, $q'_0 = 0.78$ and $q'_1 = 5.0$. Note that q'_0 and q'_1 are the value of $dq/d\bar{\Psi}$ at the axis and the edge respectively, and Ψ_s simulates the effect of an X-point.