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DIlI-D SHOT #87009 Observes a Plasma Disruption
During Neutral Beam Heating At High Plasma Beta
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(Ul Callen et.al, Phys. Plasmas 6, 2963 (1999)




Resistive MHD Equations Used
to Numerically Model Disruption

- MHD Equations Solved:
— Density Equation:

@+V-nV=O
ot

— Momentum Equation

p(%+(V-V)V) =JxB-Vp-uv?V

— Resistive MHD Ohm’s Law:
E=-VxB+ nd
Hr_/ ——

Ideal MHD Resistive
MHD

— Temperature Equations:
T,
ot

Currently: q,=-xbb-VT -(x, -k )VT
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Two Types of Simulations Performed
to Explore Disruption Dynamics

Fixed Boundary
- Computational boundary is
set by last closed flux surface
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- Makes computations easier

Used to explore time dynamics
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Two Types of Simulations Performed
to Explore Disruption Dynamics

Closed fleld lines
hot plasma Free Boundary

- Computational boundary is set
by vacuum vessel

- Spitzer resistivity: n~T-32
—Suppress currents on open
fieldlines
—Large gradients in 3D

- Requires accurate calculation of
anisotropic thermal conduction

Used to explore spatial
dynamics

esp. of heat transport and
wall loading

Open fleld lines =
cold plasma




Two Types of Simulations Performed
to Explore Disruption Dynamics
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Mode Passing Through Instability Point
Has Faster-Than-Exponential Growth

- Theory of ideal growth in response to slow heating
(Callen, Hegna, Rice, Strait, and Turnbull, Phys. Plasmas 6, 2963 ( 1999)):
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Fixed Boundary Simulations
Require Going to Higher Beta

« Conducting wall raises ideal stability limit

— Need to run near critical g, for ideal instability NIMROD gives
slightly larger ideal growth rate than GATO

- NIMROD finds resistive interchange mode below ideal stability
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Nonlinear Simulations Find Faster-Than-
Exponential Growth As Predicted By Theory

- Impose heating source

proportional to equilibrium

pressure profile

* Follow nonlinear
evolution through
heating, destabilization,
and saturation

Log of magnetic energy in n =1 mode vs. time
S=10% Pr=200 y, = 103 sec™'
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Scaling With Heating Rate
Gives Good Agreement With Theory

 NIMROD simulations also Log of magnetic energy vs. (- 1,)¥2

display super-exponential for 2 different heating rates
growth
- Simulation results with E~expl(t- t )aT?, v~y 072y 0%
different heating rates are well o e A A P
fit by & ~ exp[(#-1,)/7] 32 wal /
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Goal of Simulation is to Model Power
Distribution On Limiter during Disruption

* Pressure raised 8.7% above best-fit EFIT

+ Above ideal MHD marginal stability limit
Ideal modes grow with finite n (S = 10°)

« Simulation includes:

— Anisotropic heat conduction
(with no T dependence)

_108
Kpar/errp—lo

- Plasma-wall interactions are complex and
beyond the scope of this simulation

* No boundary conditions are applied at
limiter for velocity or temperatures.

— This allows fluxes of mass and heat
through limiter

— Normal heat flux is computed at
limiter boundary
iy

i

)
///l

Limiter

2\

e
\

D

—f~Z 0
=
7

o

=

—a

o — e ———————

s S — e S g—

s

_._
saalESre——
/

Conducting wall



Simulation Shows Rapid Loss of
Internal Energy and Current Spike
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Plasma loses 60% of magnetic energy in ~200 microseconds




Movie Shows Dynamics of Disruption
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DIlI-D Limiter Geometry




Movie Shows Dynamics of Disruption

QE iy Initial Heat Flux is Low
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Movie Shows Dynamics of Disruption

Temperature Isosurfaces
Fieldline colored by temperature
Nodes indicate distance along fieldline




Movie Not Included In This File

- See: for movie and related information




Macroscopic Islands Appear
At 2/1 Rational Surfaces
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Heat Flux is Localized Poloidally And Toroidally




Localized Areas Of Heat Flux on Top and Bottom
Divertors Connected Topologically




&

643 microsec

What Sets Critical Topological
Group of Fieldlines?




What Sets Critical Topological
Group of Fieldlines?

i ° Four fieldlines are started from this region. Color
denotes total length of fieldline ‘




Boundary Between Open And Closed Fieldlines
Key to Understanding Wall Loading

- Red fieldlines are completely confined.
. Green and blue are not




Boundary Between Open And Closed Fieldlines
Key to Understanding Wall Loading

* Top view - Bottom view
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Conclusions

- Heating through g limit shows super-exponential growth, in
agreement with experiment and theory in fixed boundary cases.

« Qualitative agreement with experiment: ~200 microsecond time
scale, heat lost preferentially at divertor.

- Heat flux is localized poloidally and toroidally as plasma localizes
the perpendicular heat flux, and the parallel heat flux transports it
to the wall.

- Wall interactions are not a dominant force in obtaining qualitative
agreement for these types of disruptions (fast, internal mode).

- Loss of internal energy is due to rapid stochastization of the field,
and not a violent shift of the plasma into the wall.

8




Future Directions

- Direct comparison of code against experimental diagnostics

* Disruption simulations in H-mode discharges

- Improvements of model:
— heat flux model
- Temperature-dependent diffusivities
- Landau-fluid closures
- Integral heat flux closure (Eric Held)
— Impurity model (V. /Izzo, R. Granetz, D. Whyte)
— Resistive wall B.C. and external circuit modeling
— Two-fluid modeling

- Simulations of different devices to understand how
magnetic configuration affects the wall power loading
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