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1. Stellarator Simulations

M3D is initialized with VMEC, an ideal MHD equilib-
rium code. To compare with PIES, we want resistive equi-
libria with islands. Solving with full pressure equation,
including parallel smoothing, gives resistive ballooning.

Source terms J�0; p0 are included to maintain the toroidal
current and pressure.
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Pressure is advanced by both advection and \arti�cial
sound" to relax towards a state with

rkp = 0:

(HINT) omit pressure advection. Apply arti�cial sound
every na timesteps (100 � na � 1):Convergence criterion

jrkpj=jr?pj < Æ:

Examples:

(a) resistive ballooning in li383

(b) (5,3) island with \arti�cial sound" only.
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2. Integration of M3D / Parm3d

Purpose: to reuse physics code in M3D not imple-
mented in ParM3D

M3D

� Physics Driver

{ advances MHD equations

{ 2-
uid, neoclassical, particles

� Mesh Modules

{ 1D �nite - di�erence, 2D spectral

{ 2D poloidal (RZ) unstructured mesh (linear trian-
gles & bilinear rectangles), spectral toroidal

{ 2D poloidal unstructured mesh, toroidal �nite dif-
ference

� OMP (shared memory) toroidal domains

� MPI (distributed memory) interface to ParM3D
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� Physics Driver - M3D

� MPI Mesh Module - ParM3D

{ Petsci library of parallel structures (Vec, Mat) and
solvers

{ initialization

� initialize communications

� read VMEC equilibrium data

� set up grid

� 2D (R,Z) unstructured & toroidal structured
mesh

� poloidal & toroidal domain decomposition

� calculate �nite element matrices

{ routines called from physics driver

� di�erential and integral operators (grad, div, curl),

� elliptic eqs. (r2

?;�
�, ...)

{ parallel I/O

� validation
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3. GRIN

� plasma surrounded by a toroidally symmetric vessel

� vacuum beyond vessel

� vessel's conductivity � � thickness Æ � �nite

Compute the vacuum `impedance' Z � linear matrix re-
lating the normal magnetic perturbation Bn to the tan-
gential component Bt.

� Bn continuous across shell (thin wall approximation)

� jump [[Bt]] � �Æ E� n

Natural boundary conditions involveE�n at the plasma
edge.

From Bn ! Boutside
t ! [[Bt]] Binside

t .

� M3D provides Bn and Binside
t

� GRIN computes Z

� Boutside
t = ZBn

The Z matrix depends on the shell geometry only. It is
computed before launching a nonlinear M3D calculation.

5



B in vacuum

� poloidal and toroidal slit ) m = 0 and n = 0 B
components are continuous

� no external n 6= 0 currents

�r�B = 0 ) B = r�

� r2� = 0

� � = PN
n=1 �n exp in�

Green's functions

From Green's identity get integral equation relating �n
to given @�n=@n = Bn on boundary contour, following
Chance [Phys. Plasmas 4, 2161 (1997)]. GRIN calcu-
lates `impedance' Z matrix elements

�
R
d`0K(`; `0)�0(`0)

�
R

s d`�(`)
R

s0 d`0K(`; `0)�0(`0)

for arbitrary open or closed segments s and s0, and K a
user-supplied kernel with a singularity as `! `0.

6


