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As the development of magnetic plasma 
confinement approaches conditions for ignition, ...
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… the need for 
predictive simulation  
increases.

proposed International Thermonuclear 
Experimental Reactor (ITER)

• Fusion power: 500 MW

• Stored thermal energy: 10s of MJ

Critical ‘macroscopic’ topics 
include:

1. Internal kink stability
2. Neoclassical tearing 

excitation and control
3. Edge localized mode 

control
4. Wall-mode feedback
[2002 Snowmass Fusion Summer 

Study]

planned
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Macroscopic Plasma Dynamics

• Magnetohydrodynamic (MHD) or MHD-like activity limits 
operation or affects performance in all magnetically confined 
configurations.

• Analytical theory has taught us which physical effects are 
important and how they can be described mathematically.

• Understanding consequences in experiments (and predicting 
future experiments) requires numerical simulation:

• Sensitivity to equilibrium profiles and geometry

• Strong nonlinear effects

• Competition among physical effects



Fusion plasmas exhibit enormous ranges of 
temporal and spatial scales.

• Nonlinear MHD-like behavior couples many of the time- & length-scales.

• Even within the context of resistive MHD modeling, there is stiffness and 
anisotropy in the system of equations.
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Examples of Nonlinear Macroscopic Simulation
1) MHD evolution of the tokamak internal 

kink mode (m=1, n=1)
• Plasma core is exchanged with cooler 

surrounding plasma.

M3D simulation of NSTX [W. Park]

Evolution of pressure and magnetic topology 
from a NIMROD simulation of DIII-D



Examples of Nonlinear Macroscopic Simulation (continued)
2) Disruption (Loss of Confinement) events

• Understanding and mitigation are critical for a device the size of ITER.

Simulated event in DIII-D starts 
from an MHD equilibrium fitted 
to laboratory data.

Resulting magnetic topology 
allows parallel heat flow to the 
wall.

simulation & graphics by S. Kruger and A. Sanderson



Examples of Nonlinear Macroscopic Simulation (continued)

3) Helical island formation from tearing 
modes
• Being weaker instabilities, tearing modes are 
heavily influenced by non-MHD effects.
• Tearing modes are usually non-disruptive but 
lead to significant performance loss.
• Slow evolution makes the system very stiff.
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Examples of Nonlinear Macroscopic Simulation (continued)
4) Edge localized modes

• Strong gradients at the open/closed flux 
boundary drive localized modes.
• Heat transport to the wall occurs in 
periodic events—can be damaging if not 
controlled.

Nonlinear coupling in MHD 
simulation leads to localized 
structures that are suggestive 
of bursty transport.

Medium-wavenumber modes are 
unstable.

simulation by D. Brennan
MHD description is insufficient, however.



Computational Modeling

Important considerations:
• Stiffness arising from multiple time-scales

• Fastest propagation is determined by linear 
behavior

• Anisotropy relative to the strong magnetic field
• Distinct shear and compressive behavior
• Extremely anisotropic heat flow

• Magnetic divergence constraint
• Weak resistive dissipation
• Typically free of shocks



Equations (for the mathematicians if not the physicists)
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Modeling: Spatial Representation

• The NIMROD code (http://nimrodteam.org) uses 
finite elements to represent the poloidal plane and 
finite Fourier series for the periodic direction.
• Polynomial basis functions may be Lagrange or 
Gauss-Lobatto-Legendre.  Degree>1 provides

• High-order convergence without uniform 
meshing
• Curved isoparametric mappings
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Modeling: Spatial Representation (continued)
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• Polynomials of degree>1 also provide
• Control of magnetic divergence error
• Resolution of extreme anisotropies (Lorentz force and diffusion)

Critical island width vs. χ||/χperp
Wc shows where diffusion time-scales 
match [Fitzpatrick, PoP 2, 825 (1995)].

Magnetic divergence constraint    
Scalings show the convergence rates 
expected for first derivatives.

See JCP 195, 355 (2004).



Modeling: Time-advance algorithms
• Stiffness from fast parallel transport and wave propagation requires 
implicit methods.
• Semi-implicit methods for MHD have been refined over the last two 
decades.
• Time-centered implicit methods are becoming more practical with matrix-
free Newton-Krylov solves.
• A new implicit leapfrog advance is being developed for NIMROD 
modeling of two-fluid effects (drifts and dispersive waves).
• Matrices are sparse and ill-conditioned.

• They are solved during each time-step 
(~10,000s over a nonlinear simulation).

• Factoring is less frequent.

Example sparsity pattern for a 
small mesh of biquartic elements



Modeling: Implementation
• Solving algebraic systems is the dominant performance issue.
• Iterative methods scale well but tend to perform poorly on ill-conditioned 
systems.
• Collaborations with TOPS Center researchers Kaushik and Li led us to parallel 
direct methods with reordering→SuperLU (http://crd.lbl.gov/~xiaoye/SuperLU/).
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SuperLU improves NIMROD performance by a factor of 5 in nonlinear simulations.



Initial Application of the Two-Fluid Model to ELMs

The two-fluid model (including Hall 
and gyroviscous effects) shifts the 
mode downward and induces 
rotation.

MHD Two-fluid

peak  
amplitude peak  

amplitude
Nonetheless, preliminary scans are 
indicating that anisotropic 
conduction is more important for 
stabilizing short wavelengths.

calculations by A. Pankin

Also see two-fluid modeling by Sugiyama in poster WED08.



Conclusions
The challenges of macroscopic modeling are being met by developments in 
numerical and computational techniques, as well as advances in hardware.

• High-order spatial representation controls magnetic divergence error and 
allows resolution of anisotropies that were previously considered beyond 
reach.

• SciDAC-fostered collaborations have resulted in huge performance gains 
through sparse parallel direct solves (with SuperLU).

• SciDAC support for computing and collaborations is benefiting the fusion 
program at an opportune time.

• Integrated modeling (macro+turbulence+RF+edge) is the new horizon.

• The macroscopic modeling tools are also applicable to problems in space 
and astrophysical plasmas.

Other Remarks


