Astrophysical Dynamos

Eric Blackman, Ben Brown, Fausto Cattaneo, Cary Forest, Giles Novak, Annick Pouquet, John Sarff, Juri Toomre, Ellen Zweibel

Working Definition

- An astrophysical dynamo is a set of mechanisms which convert mechanical energy to magnetic energy and/or sustain the magnetic field against dissipation.
- Possible venues include planets, stars, galaxies, the intergalactic medium, accretion disks, jets.
- Grand challenge problem, many opportunities & links to other areas.

Plan of Presentation

- Introduction, important problems, opportunities for observations, links to other topics (Ellen, 30m)
- Experimental opportunities (Cary, 20m)
- Theoretical & numerical opportunities (Fausto, 20m)
- Impact on astrophysics (Eric, 20m)
- Discussion (moderated by Ellen, 30m)

Recommendations: Observations

- Use existing & planned observing facilities to better characterize solar & stellar magnetic fields, map the Galactic magnetic field, probe galactic magnetic fields over cosmic time, search for an intergalactic field.
- Consider proposing new instruments & facilities.

Recommendations: Experiment

- Develop experiments on flow dominated plasma dynamos with flexible plasma parameters, flow states, & boundary conditions.
- Continue study of magnetic selforganization, field-flow coupling, role of boundary conditions, & effects beyond MHD in magnetically dominated plasmas.

Recommendations: Theory & Simulation

- Support observations & experiments to maximize their impact, validate codes, test theories.
- Use theory & simulation to extrapolate to extreme parameter regimes of astrophysical dynamos.
- Explore low order models, simple parameterizations.

Solar Magnetic Activity Cycle

- Maximum in sunspot number every 11 yrs.
- Bipolar sunspot pairs indicate a toroidal field.
- Flux appears at progressively lower latitudes as cycle progresses.
- Toroidal field reverses every 11 yrs.
- Rotation period is 1 mo, Ohmic decay time is 10¹⁰ yr.

Dynamos in Differentially Rotating Systems with Thermal Convection: Parker

- Differential rotation converts poloidal to toroidal field: ω effect.
- Small scale helical motion converts toroidal to poloidal field: α effect.
- Turbulent diffusion of large scale field: β effect.

In Context of Solar Structure

Cutaway view of the solar interior showing radiative core, convective envelope, & complex magnetic outer boundary condition.

Mean Field Electrodynamics

- Assume scale separation for v and **B**.
- Make quasilinear approximation.
- In the simple case of isotropic turbulence,

Equation for mean field
$$\langle \mathbf{B} \rangle$$

$$\partial \langle \mathbf{B} \rangle \partial t = -c \nabla \times \langle \mathbf{E} \rangle,$$

$$-c\langle \mathbf{E} \rangle = \langle \mathbf{v} \rangle \times \langle \mathbf{B} \rangle + \langle \mathbf{v}' \times \mathbf{b}' \rangle + (\beta + \eta) \nabla \times \langle \mathbf{B} \rangle.$$

and

$$\langle \mathbf{v}' \times \mathbf{b}' \rangle = \alpha \langle \mathbf{B} \rangle.$$

α effect identified in RFP

 Poloidal field is converted to toroidal field, producing the field reversal.
 Additional terms in Ohm's Law include
 MHD fluctuations,
 Hall terms,
 diamagnetic terms.

Theoretical Problems with MFED

- Predicts small scale field grows much faster than large scale field when S is large (*consequence of fieldline stretching in a fixed volume*).
- Large scale field may saturate at very low levels due to feedback on α and β .
- Scale separation not achieved in astrophysical systems.

Empirical Problems with MFED

- Not a good descriptor of numerical simulations.
- Helioseismically determined ω gives equator to pole flux migration.

Some Current Directions

- Follow flow of magnetic helicity, including effect of ejection through the boundaries.
- Characterize essentially nonlinear dynamos as models of saturated states.
- Explore statistical properties of small scale kinematic dynamos for a wide range of spectra & parameters.
- Explore non-turbulent dynamos w. induction by coherent flow.
- Direct numerical simulation of astrophysical systems, especially stars & disks.

Basic Questions about Solar/Stellar Dynamos

- What controls the cycle period?
- What sets the magnetic fieldstrength?
- How does the field affect convective transport, differential rotation, & meridional flow?
- How are the interior and escaping fields related?
- Can solar activity be predicted on short timescales?

Plus dynamos in protostars, massive stars, collapsing stars...

Galactic Magnetic Fields

Magnetic fields of M51, a normal spiral (top), and NGC1569, a dwarf starburst (bottom), revealed by synchrotron emission. Both random and organized orientations are present, energy is comparable to turbulent energy.

Is There a Galactic Dynamo?

- No evidence for cycles.
- Strong argument based on 10⁹ year replacement time of the interstellar medium.
- Elements of a galactic dynamo: shearing, efficient diffusion into undermagnetized gas, assimilation of new field, generation of large scale field from small scale sources.

Basic Questions about Galactic Dynamos

- How is a coherent field generated & maintained?
- What determines the overall fieldstrength & magnetic power spectrum?
- What are the consequences of nonstandard features such as cosmic rays & partial ionization?
- Is disk-halo interaction a vital part of the dynamo?
- What is the history of magnetic fields in galaxies?

Accretion Disks

• Top: protoplanetary disk & jet. Bottom: artist's rendering of accretion disk formed by Roche lobe overflow onto a compact object. In many disks, accretion is thought to be mediated by magnetic turbulence. Does this turbulence generate a large scale field?

Galaxy Clusters

 Top: optical image of the Perseus galaxy cluster core. Bottom: x-ray image. Galaxy clusters are pervaded by hot, magnetized plasma. Can the magnetic field be explained by merging galactic fields?

A Wide Range of Plasma Conditions

- Collisional (stellar interiors) to collisionless (galaxy clusters, black hole accretion disks).
- Pm $(v/\eta) >> 1$ (interstellar gas) to << 1 (stellar interiors).
- Rm (LV/η) >> 1 (interstellar gas) to << 1 (protostellar disks).
- M << 1 (stellar interiors) to >> 1 (interstellar gas).
- Skin depths & gyroradii generally microscopic.

Current Experiments

- Liquid metal (Cadarache, Los Alamos, Maryland, Wisconsin).
- Magnetically dominated RFP plasmas (Wisconsin, Padova).
- Plasma dynamo experiment at Wisconsin recently funded.

Goals of Dynamo Studies

- Predict or explain gross features of astrophysical dynamos: field strength, parity, & temporal behavior as they relate to the underlying system.
- Develop (or rule out the possibility of) a simple low order parameterized theory of astrophysical dynamos, useful to nonspecialists.

Opportunities for Observations

Solar & Stellar Magnetic Fields Galactic & Intergalactic Magnetic Fields

Methods of Detection

- Zeeman effect (longitudinal & transverse)
- Faraday rotation
- Synchrotron radiation
- Absorption & emission from magnetically aligned dust grains
- UV & x-ray emission known to be correlated with magnetic fields.

Some Solar/Stellar Opportunities

- Solar Dynamics Observatory (2010 launch), magnetograms at 1" resolution every 90 s.
- Advanced Technology Solar Telescope, magnetic & kinetic helicity fluxes at tiny scales.
- Statistics of stellar activity: Sloan Digital Sky Survey, Kepler.

Some Galactic/Extragalactic Opportunities

full-hemisphere survey with SKA will provide 10,000fold increase in number of sources to probe Galactic Faraday rotation (simulated ~1 deg region shown)

Some Galactic/Extragalactic Opportunities (continued)

- NASA's planned CMBpol mission is aimed at inflation-era gravity waves, but will also deliver polarized dust emission
- Areas of sensitive dust polarimetry maps from Planck (red) and EPIC-IM CMBpol mission (yellow)

Links to Other Topics

- Turbulence (traditionally key, role disputed)
- Reconnection (no dynamo without topological change)
- Momentum transport (*field reacts back on flow*)
- Large scale instabilities (may play a role in generation of large scale field, relaxation, saturation)

Extra Slides

Solar Active Regions

Vector magnetogram (top) and EUV image (bottom) indicate multiplicity of scales and complex outer
boundary condition of the solar magnetic field.

Stellar Cycles

- Stars with envelope thermal convection, like the Sun, have activity cycles.
- Cycle period tends to increase with rotation period, and with age.

Trends in Stellar Magnetic Activity

- Activity decreases with age.
- Activity decreases

 with Rossby
 number Ro (the
 ratio of flow time to
 convective turnover
 time).

Milky Way Magnetic Field

 Faraday rotation of pulsars & extragalactic sources reveals a uniformly directed field nearly aligned with galactic rotation as well as a random component 2-3 times larger.

Synchrotron - Star Formation Correlation

 There is a tight correlation between far infrared luminosity, a measure of the star formation rate, and synchrotron luminosity, a measure of the magnetic & cosmic ray energy densities.

Diagnostics From Aligned Dust Grains

• Left: Orientation of magnetic field outside a dense interstellar cloud. Right: Orientation of magnetic field in a star forming region revealed by far-IR emission.