Momentum transport in stars

Matthew Browning with work from Mark Miesch, Sacha Brun Juri Toomre, Gibor Basri, Ben Brown

Internal rotation profile revealed

 Tachocline of rotational shear at base of CZ probably plays crucial role in solar dynamo

Rotational braking

Stars spin down over time

As angular momentum is lost to magnetized wind

Mass-dependence of braking

Timescale for braking depends on stellar mass Core-envelope coupling poorly understood

Differential rotation on other stars?

Methods. 1) measure rotation period variation for years

GIANT CELL CORE RADIATIVE ZONE ST, RANGE OF DYNAMICAL SCALES

Motivating questions: order amidst chaos

- How does convection establish strong differential rotation?
- Is this process generic in stars? (How does it depend on mass, rotation, etc?)

Methods of attack 1: mean-field/closure models

Idea: adopt some prescription for Reynolds stresses, etc -- classic turbulent closure problem Can essentially duplicate solar rotation profile, but have some "free" parameters (predictions for other stars are not yet clear)

Methods of attack 2: 3-D simulations (spherical or otherwise)

Main result from early models: could duplicate solar EQ speedup, but interior angular velocity nearly constant on cylinders (Proudman-Taylor)

NB also: direction of transport different in slow/fast rotators

Equatorial speedup or slowdown

"Solar-like" surface differential rotation generically realized when rotation strong(ish)

Anti-solar rotation realized in very slow rotators

Big caveat: magnetic fields

Browning (2010)

Rotating at solar angular velocity (Ro~0.2)

Rotating ten times slower

Clear observational prediction (not yet tested)

Vigorous and evolving convection

Radial velocity V_r near top of "solar" CZ

Broad upflows, narrow downflows

Coherent structures that persist

Case E, Brun et al.

Differential rotation realized

Reasonable contact with helioseismic angular velocity

(but still typically too cylindrical)

Important role played by Reynolds stresses

Breaking Taylor-Proudman constraint

Impose latitude-dependent bottom temperature BC

Miesch et al. (2006)

Warm poles, cool equator

Conical profile maintained by baroclinic effects

Zoo of Stellar Momentum Transport

Miesch et al. (2009)

... plus magnetic fields (alas)

Why a tachocline?

Two main classes of models for uniform rotation of solar interior:

1) Magnetic field pervading radiative zone

Weak field sufficient

Main problem is preventing "link-up" with CZ

Gough & McIntyre (1998)

Why a tachocline (2) ?

2) Gravity waves might extract angular momentum from core

Only 2-D sims (or unrealistic stratifications) so far

Unclear whether this can actually lead to uniform rotation (or "shear-layer oscillations")

Rogers \& Glatzmaier (2006+)

How can we do better? 1. Isolate pieces of physics

The Sun is a great laboratory, BUT

It is also a pain:

It has a tachocline

Rotation is "sort-of" important

We will learn a lot from study of other stars: e.g., fully convective Mdwarfs

(This one generates strong I-s field without evident diff. rotn.)

Donati et al. 2006

Opportunities from new observations

Kepler: monitoring photometric variability of ~150,000 stars

Mission lifetime ~years

Determine photometric rotation periods (incl. M-dwarfs!), mag cycles, ...

Also some asteroseismology capability

Basri, Walkowicz et al. (2010)

How can we do better? 2. Resolve new scales/physics

Wide range of spatial and temporal scales

An extremely pessimistic view: Need dynamic range >10⁶

More plausible:
Need to resolve range of scales above/below Rossby radius; also overshooting region. (g-modes? MRI?)

Timescale problem tricky: May need to couple 2-D, 3-D models

Summary and reflections

- The Sun and other stars show persistent differential rotation
- Some aspects understood, but many puzzles remain

- New simulations will help: resolve additional relevant physics, isolate pieces of problem
- New observations (e.g. Kepler) will constrain momentum transport on other stars
- But there is also a need for more cross-talk between theory, simulation, and observation

Using spots to infer differential rotation

Spots move faster than photosphere

Interpreted as speedup with depth (spots anchored below surface) (Foukal 1972)

Dynamical balances in convection zone

Meridional circulations balance Reynolds stresses

$$\nabla \cdot (\overline{\rho} \langle \mathbf{v}_m \rangle \mathcal{L}) = -\nabla \cdot (\overline{\rho} r \sin \theta \langle v_{\phi}' \mathbf{v}_m' \rangle)$$

Thermal wind balance

$$\frac{\partial \Omega}{\partial z} = \frac{g}{2\Omega_0 r^2 \sin \theta C_P} \frac{\partial \langle S \rangle}{\partial \theta}$$

i.e., cylindrical symmetry broken by entropy gradients

(Supposing steady-state, non-magnetic (!), neglect viscosity; for TW: rapid rotation (Coriolis >> RS), ideal gas in hydro equilib.)

Motivating questions 2: a more detailed view

- Why a fast eq/slow pole?
- Why is rotation roughly constant on radial lines?
- Why is the interior in solidbody rotation?
- Why a near-surface shear layer?
- What is timescale for coreenvelope coupling?